Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On vertices of the k-additive monotone core

dc.book.titleIFSA-EUSFLAT 2009 Proceedings
dc.contributor.authorMiranda Menéndez, Pedro
dc.contributor.authorGrabisch, Michel
dc.contributor.editorCarvalho, J.P.
dc.contributor.editorDubois, D.
dc.contributor.editorKaymak, U.
dc.contributor.editorSousa, J.M.C.
dc.date.accessioned2023-06-20T13:38:37Z
dc.date.available2023-06-20T13:38:37Z
dc.date.issued2009
dc.descriptionProceedings of the Joint 2009 International Fuzzy Systems Association World Congress and 2009 European Society of Fuzzy Logic and Technology Conference, Lisbon, Portugal, July 20-24, 2009.
dc.description.abstractGiven a capacity, the set of dominating k-additive capacities is a convex polytope; thus, it is defined by its vertices. In this paper we deal with the problem of deriving a procedure to obtain such vertices in the line of the results of Shapley and Ichiishi for the additive case. We propose an algorithm to determine the vertices of the k-additive monotone core. Then, we characterize the vertices of the n-additive core and finally, we explore the possible translations for the k-additive case
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16957
dc.identifier.isbn978-989-95079-6-8
dc.identifier.officialurlhttp://www.eusflat.org/proceedings/IFSA-EUSFLAT_2009/pdf/tema_0076.pdf
dc.identifier.relatedurlhttp://www.eusflat.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/53168
dc.language.isoeng
dc.page.final81
dc.page.initial76
dc.page.total1930
dc.publisherInternational Fuzzy Systems Association (IFSA); European Society for Fuzzy Logic and Technology (EUSFLAT)
dc.relation.projectIDMTM2007-61193
dc.relation.projectIDCAM-UCM910707.
dc.rights.accessRightsrestricted access
dc.subject.cdu514.113
dc.subject.keywordKeywords—Capacities
dc.subject.keywordk-additivity
dc.subject.keyworddominance
dc.subject.keywordcore
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleOn vertices of the k-additive monotone core
dc.typebook part
dcterms.referencesO. Bondareva. Some applications of linear programming to the theory of cooperative games. Problemy Kibernet, (10):119–139, 1963. T. Driessen. Cooperative Games. Kluwer Academic, 1988. M. Grabisch. Alternative representations of discrete fuzzy measures for decision making. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 5:587–607, 1997. M. Grabisch and P. Miranda. On the vertices of the k-additive core. Discrete Mathematics, (308):5204–5217, 2008. A. P. Dempster. Upper and lower probabilities induced by a multivalued mapping. The Annals of Mathematical Statististics,(38):325–339, 1967. G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, Princeton, New Jersey, (USA), 1976. P. Walley and T. L. Fine. Towards a frequentist theory of upper and lower probability. Ann. of Stat., 10:741–761,1982. M. Wolfenson and T. L. Fine. Bayes-like decision making with upper and lower probabilities. J. Amer. Statis. Assoc.,(77):80–88, 1982. P. Walley. Coherent lower (and upper) probabilities. Technical Report 22, U. of Warwick, Coventry, (UK), 1981. G. Choquet. Theory of capacities. Annales de l’Institut Fourier,(5):131–295, 1953. A. Chateauneuf and J.-Y. Jaffray. Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion. Mathematical Social Sciences,(17):263–283, 1989. G. Owen. Game Theory. Academic Press, 1995. D. Denneberg. Non-additive measures and integral. Kluwer Academic, 1994. M. Sugeno. Theory of fuzzy integrals and its applications. PhD thesis, Tokyo Institute of Technology, 1974. G. C. Rota. On the foundations of combinatorial theory I. Theory of Möbius functions. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, (2):340–368, 1964. M. Grabisch. k-order additive discrete fuzzy measures. In Proceedings of 6th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU), pages 1345–1350, Granada (Spain), 1996. L. S. Shapley. Cores of convex games. International Journal of Game Theory, 1:11–26, 1971. T. Ichiishi. Super-modularity: Applications to convex games and to the Greedy algorithm for LP. Journal of Economic Theory, (25):283–286, 1981. P. Miranda and M. Grabisch. k-balanced games and capacities. European Journal of Operational Research, (Accepted). T. Matsui. NP-completeness of non-adjacency relations on some 0-1-polytopes. In Lecture Notes in Operations Research, 1, pages 249–258. 1995. C. Papadimitriou. The adjacency relation on the travelling salesman polytope is NP-complete. Mathematical Programming, 14(1), 1978. D. Radojevic. The logical representation of the discrete Choquet integral. Belgian Journal of Operations Research, Statistics and Computer Science, 38(2–3):67–89, 1998. E. F. Combarro and P.Miranda. On the polytope of non-additive measures. Fuzzy Sets and Systems, 159(16):2145–2162, 2008. P. Miranda, E.F. Combarro, and P. Gil. Extreme points of some families of non-additive measures. European Journal of Operational Research, 33(10):3046–3066, 2006.
dspace.entity.typePublication
relation.isAuthorOfPublicationd940fcaa-13c3-4bad-8198-1025a668ed71
relation.isAuthorOfPublication.latestForDiscoveryd940fcaa-13c3-4bad-8198-1025a668ed71

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Miranda09.pdf
Size:
180.78 KB
Format:
Adobe Portable Document Format