Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Recognition and classification of histones using support vector machine

dc.contributor.authorBhasin, Manoj
dc.contributor.authorReinherz, Ellis L
dc.contributor.authorReche Gallardo, Pedro Antonio
dc.date.accessioned2023-06-20T09:48:07Z
dc.date.available2023-06-20T09:48:07Z
dc.date.issued2006
dc.description.abstractHistones are DNA-binding proteins found in the chromatin of all eukaryotic cells. They are highly conserved and can be grouped into five major classes: H1/H5, H2A, H2B, H3, and H4. Two copies of H2A, H2B, H3, and H4 bind to about 160 base pairs of DNA forming the core of the nucleosome (the repeating structure of chromatin) and H1/H5 bind to its DNA linker sequence. Overall, histones have a high arginine/lysine content that is optimal for interaction with DNA. This sequence bias can make the classification of histones difficult using standard sequence similarity approaches. Therefore, in this paper, we applied support vector machine (SVM) to recognize and classify histones on the basis of their amino acid and dipeptide composition. On evaluation through a five-fold cross-validation, the SVM-based method was able to distinguish histones from nonhistones (nuclear proteins) with an accuracy around 98%. Similarly, we obtained an overall >95% accuracy in discriminating the five classes of histones through the application of 1-versus-rest (1-v-r) SVM. Finally, we have applied this SVM-based method to the detection of histones from whole proteomes and found a comparable sensitivity to that accomplished by hidden Markov motifs (HMM) profiles.
dc.description.departmentDepto. de Inmunología, Oftalmología y ORL
dc.description.facultyFac. de Medicina
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/9328
dc.identifier.issn1066-5277
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50381
dc.issue.number1
dc.journal.titleJournal of computational biology : a journal of computational molecular cell biology
dc.language.isoeng
dc.page.final12
dc.page.initial102
dc.rights.accessRightsopen access
dc.subject.ucmBioinformática
dc.subject.ucmBiología molecular (Biología)
dc.subject.unesco2415 Biología Molecular
dc.titleRecognition and classification of histones using support vector machine
dc.typejournal article
dc.volume.number13
dspace.entity.typePublication
relation.isAuthorOfPublication372eb700-f6f8-4156-80f5-b8f7c9edafe1
relation.isAuthorOfPublication.latestForDiscovery372eb700-f6f8-4156-80f5-b8f7c9edafe1

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
31.Reche_etal_MI_2006.pdf
Size:
658.15 KB
Format:
Adobe Portable Document Format

Collections