Topological massive Dirac edge modes and long-range superconducting Hamiltonians

dc.contributor.authorViyuela García, Óscar
dc.contributor.authorVodola, V.
dc.contributor.authorPupillo, G.
dc.contributor.authorMartín-Delgado Alcántara, Miguel Ángel
dc.date.accessioned2023-06-17T23:54:23Z
dc.date.available2023-06-17T23:54:23Z
dc.date.issued2016-09-13
dc.description©2016 American Physical Society. M.A.M-D. and O.V. thank the Spanish MINECO Grant FIS2012-33152, the CAM research consortium QUITEMAD+ S2013/ICE-2801, the U.S. Army Research Office through Grant W911NF-14-1-0103, FPU MECD Grant and Residencia de Estudiantes. G.P. and D.V. acknowledge support by the ERC-St Grant ColdSIM (No. 307688), EOARD, UdS via Labex NIE, ANR via BLUSHIELD and IdEX, RYSQ.
dc.description.abstractWe discover novel topological effects in the one-dimensional Kitaev chain modified by long-range Hamiltonian deformations in the hopping and pairing terms. This class of models display symmetry-protected topological order measured by the Berry/Zak phase of the lower-band eigenvector and the winding number of the Hamiltonians. For exponentially decaying hopping amplitudes, the topological sector can be significantly augmented as the penetration length increases, something experimentally achievable. For power-law decaying superconducting pairings, the massless Majorana modes at the edges get paired together into a massive nonlocal Dirac fermion localized at both edges of the chain: a new topological quasiparticle that we call topological massive Dirac fermion. This topological phase has fractional topological numbers as a consequence of the long-range couplings. Possible applications to current experimental setups and topological quantum computation are also discussed.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipConsorcio QUantum Information TEchnologies MADrid
dc.description.sponsorshipU.S. Army Research Office, EE.UU.
dc.description.sponsorshipAyudas para la formación de profesorado universitario (FPU), MECD
dc.description.sponsorshipMinisterio de Educacuón, Cultura y Deporte (MECD)
dc.description.sponsorshipResidencia de Estudiantes
dc.description.sponsorshipEuropean Research Council (ERC)
dc.description.sponsorshipEuropean Office of Aerospace Research and Development (EOARD)
dc.description.sponsorshipUniversité de Strasbourg (UdS) - Labex
dc.description.sponsorshipInitiatives d'excellence (IDEX), ANR
dc.description.sponsorshipAgence nationale de la recherche (ANR), Francia.
dc.description.sponsorshipRydberg Quantum Simulators (RYSQ), UE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/39853
dc.identifier.citationM. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010). X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011). N. Read and D. Green, Phys. Rev. B 61, 10267 (2000). A. Y. Kitaev, Phys.-Usp. 44, 131 (2001). V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Science 336, 1003 (2012). M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and H. Q. Xu, Nano Lett. 12, 6414 (2012). A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum and H. Shtrikman, Nat. Phys. 8, 887 (2012). S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A. H. MacDonald, B. A. Bernevig, and A. Yazdani, Science 346, 602 (2014). H.-H. Sun, K.-W. Zhang, L.-H. Hu, C. Li, G.-Y. Wang, H.-Y. Ma, Z.-A. Xu, C.-L. Gao, D.-D. Guan, Y.-Y. Li, C. Liu, D. Qian, Y. Zhou, L. Fu, S.-C. Li, F.-C. Zhang, and J.-F. Jia, Phys. Rev. Lett. 116, 257003 (2016). S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth, T. S. Jespersen, J. Nygard, P. Krogstrup and C. M. Marcus, Nature (London) 531, 206 (2016). C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. D. Sarma, Rev. Mod. Phys. 80, 1083 (2010). B. M. Terhal, Rev. Mod. Phys. 87, 307 (2015). A. Altland and B. Simons, Condensed Matter Field Theory (Cambridge University Press, New York, 2010). D. Vodola, L. Lepori, E. Ercolessi, A. V. Gorshkov, and G. Pupillo, Phys. Rev. Lett. 113, 156402 (2014). D. Vodola, L. Lepori, E. Ercolessi, and G. Pupillo, New J. Phys. 18, 015001 (2016). A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys. Rev. B 78, 195125 (2008). A. Kitaev, in Advances in Theoretical Physics: Landau Memorial Conference, edited by V. Lebedev and M. Feigel'man, AIP Conf. Proc. No. 1134 (AIP, New York, 2009), p. 22. M. V. Berry, Proc. R. Soc. A 392, 45 (1984). B. Simon, Phys. Rev. Lett. 51, 2167 (1983). J. Zak, Phys. Rev. Lett. 62, 2747 (1989). O. Viyuela, A. Rivas, and M. A. Martin-Delgado, Phys. Rev. Lett. 112, 130401 (2014). P. Massignan, A. Sanpera, and M. Lewenstein, Phys. Rev. A 81, 031607(R) (2010). L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D. Pekker, G. Refael, J. I. Cirac, E. Demler, M. D. Lukin, and P. Zoller, Phys. Rev. Lett. 106, 220402 (2011). A. Bühler, N. Lang, C. V. Kraus, G. Möller, S. D. Huber and H. P. Büchler, Nature Commun. 5, 4504 (2014). I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008). W. DeGottardi, M. Thakurathi, S. Vishveshwara, and D. Sen, Phys. Rev. B 88, 165111 (2013). Z.-X. Gong, M. F. Maghrebi, A. Hu, M. Foss-Feig, P. Richerme, C. Monroe, and A. V. Gorshkov, Phys. Rev. B 93, 205115 (2016). Z.-X. Gong, M. F. Maghrebi, A. Hu, M. L. Wall, M. Foss-Feig, and A. V. Gorshkov, Phys. Rev. B 93, 041102 (2016). See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.94.125121 for details on the winding vector, the analytical structure of the edge states, the finite-size scaling of the edge mass gap, the robustness of the massive Dirac edge states against disorder, and the construction of a topological qubit within the massive Dirac phase. S. Das Sarma, M. Freedman, and C. Nayak, npj Quantum Information 1, 15001 (2015). S. B. Bravyi, A. Y. Kitaev, Ann. Phys. (NY), 298, 210 (2002). J. Alicea, Y. Oreg, G. Refael, F. von Oppen and M. P. A. Fisher, Nat. Phys. 7, 412 (2011). C. V. Kraus, P. Zoller, and M. A. Baranov, Phys. Rev. Lett. 111, 203001 (2013). F. Pientka, L. I. Glazman, and F. von Oppen, Phys. Rev. B 88, 155420 (2013). F. Pientka, L. I. Glazman, and F. von Oppen, Phys. Rev. B 89, 180505(R) (2014). A. Yazdani, B. A. Jones, C. P. Lutz, M. F. Crommie, and D. M. Eigler, Science 275, 1767 (1997). W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, Nature (London) 462, 74 (2009). J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr, Nature (London) 467, 68 (2010).
dc.identifier.doi10.1103/PhysRevB.94.125121
dc.identifier.issn2469-9950
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevB.94.125121
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/18999
dc.issue.number12
dc.journal.titlePhysical review B
dc.language.isoeng
dc.page.final125121_5
dc.page.initial125121_1
dc.publisherAmerican Physical Society
dc.relation.projectIDColdSIM (307688)
dc.relation.projectIDFIS2012-33152
dc.relation.projectIDQUITEMAD+CM (S2013/ICE-2801)
dc.relation.projectIDW911NF-14-1-0103
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordMajorana fermions
dc.subject.keywordQuantum computation
dc.subject.keywordInsulators
dc.subject.keywordPhase
dc.subject.keywordAtoms
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleTopological massive Dirac edge modes and long-range superconducting Hamiltonians
dc.typejournal article
dc.volume.number94
dspace.entity.typePublication
relation.isAuthorOfPublication1cfed495-7729-410a-b898-8196add14ef6
relation.isAuthorOfPublication.latestForDiscovery1cfed495-7729-410a-b898-8196add14ef6
Download
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martín Delgado Alcántara MÁ 109 LIBRE.pdf
Size:
361.43 KB
Format:
Adobe Portable Document Format
Collections