Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Thermally induced changes in the optical properties of SiNx : H films deposited by the electron cyclotron resonance plasma method

dc.contributor.authorMartil De La Plaza, Ignacio
dc.contributor.authorGonzález Díaz, Germán
dc.contributor.authorPrado Millán, Álvaro Del
dc.date.accessioned2023-06-20T19:06:51Z
dc.date.available2023-06-20T19:06:51Z
dc.date.issued1999-08-15
dc.description© American Institute of Physics. The authors are indebted to Dr. J. Cárabe and Dr. J. Gandía from the National Center for Energy Research (CIEMAT) for the use of the spectrometer facility, licensing of their useful software GRAFO for optical analysis, and many helpful discussions. Their friendship and support are greatly appreciated, as well as those of the technical center CAI Implantación Iónica of the University of Madrid and the financing from the Science Ministry of Spain under contract TIC98-0740.
dc.description.abstractWe analyze the effect of thermal processes on the optical properties (refractive index, optical gap, Tauc coefficient, and Urbach energy) of SiNx:H films. Films with three different nitrogen to silicon ratios (x = 0.97, x = 1.43, and x = 1.55, respectively) were deposited by a chemical vapor deposition technique assisted by an electron cyclotron resonance generated plasma. After deposition they were subjected to rapid thermal annealing at temperatures ranging from 300 degrees C to 1050 degrees C. We found that the percolation threshold for Si-Si bonds (at x = 1.1) separates films with different response to thermal treatments. The changes of the Tauc coefficient and the Urbach energy at moderate annealing temperatures indicate a structural relaxation of the network for the films with x above the percolation threshold, while at higher temperatures the trends are inverted. In the case of x below the percolation limit the inversion point is not observed. These trends are well correlated with the width of the Si-N infrared stretching absorption band. Additionally the samples with as-grown x = 1.43 show a good correlation between the Urbach energy and the density of unpaired spins in silicon dangling bonds. (C) 1999 American Institute of Physics. [S0021-8979(99)08016-0].
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipScience Ministry of Spain
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26862
dc.identifier.doi10.1063/1.371008
dc.identifier.issn0021-8979
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.371008
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59258
dc.issue.number4
dc.journal.titleJournal of Applied Physics
dc.language.isoeng
dc.page.final2061
dc.page.initial2055
dc.publisherAmerican Institute of Physics
dc.relation.projectIDTIC98-0740
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordChemical-Vapor-Deposition
dc.subject.keywordAmorphous-Silicon Nitride
dc.subject.keywordThin-Films
dc.subject.keywordRefractive-Index
dc.subject.keywordBonded-Hydrogen
dc.subject.keywordDefects
dc.subject.keywordTemperature
dc.subject.keywordDielectrics
dc.subject.keywordInterfaces
dc.subject.keywordAlloys.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleThermally induced changes in the optical properties of SiNx : H films deposited by the electron cyclotron resonance plasma method
dc.typejournal article
dc.volume.number86
dcterms.references1) E. A. Davis, N. Piggins, and S. C. Bayliss, J. Phys. C 20, 4415 (1987). 2) S. Hasegawa, M. Matsuda, and Y. Kurata, Appl. Phys. Lett. 58, 741 (1991). 3) S. García, J. M. Martín, M. Fernández, I. Mártil, and G. González-Díaz, Philos. Mag. B 73, 487 (1996). 4) J. Robertson, Philos. Mag. B 63, 47 (1991). 5) W. L. Warren, J. Kanicki, F. C. Rong, and E. H. Poindexter, J. Electrochem. Soc. 139, 880 (1992). 6) S. S. He, M. J. Williams, D. J. Stephens, and G. Lucovsky, J. Non-Cryst. Solids 164-166, 731 (1993). 7) D. G. Park, Z. Chen, A. E. Botchkarev, S. N. Mohammad, and H. Morkoc¸, Philos. Mag. B 74, 219 (1996). 8) C. G. Parker, G. Lucovsky, and J. R. Hauser, IEEE Electron Device Lett. 19, 106 (1998). 9) H. J. Stein, S. M. Myers, and D. M. Follstaedt, J. Appl. Phys. 73, 2755 (1993). 10) R. E. Norberg, D. J. Leopold, and P. A. Fedders, J. Non-Cryst. Solids 227-230, 124 (1998). 11) G. Lucovsky and J. C. Phillips, J. Non-Cryst. Solids 227-230, 1221 (1998). 12) Z. Lu, P. Santos-Filho, G. Stevens, M. J. Williams, and G. Lucovsky, J. Vac. Sci. Technol. A 13, 607 (1995). 13) Z. Jing, G. Lucovsky, and J. L. Whitten, J. Vac. Sci. Technol. B 13, 1613 (1995). 14) Z. Lu, S. S. He, Y. Ma, and G. Lucovsky, J. Non-Cryst. Solids 187, 340 (1995). 15) D. G. Park, Z. Chen, D. M. Diatezua, Z. Wang, A. Rockett, H. Morkoc¸, and S. A. Alterovitz, Appl. Phys. Lett. 70, 1263 (1997). 16) Y. Ma, T. Yasuda, and G. Lucovsky, J. Vac. Sci. Technol. A 11, 952 (1993). 17) K. C. Lin and S. C. Lee, J. Appl. Phys. 72, 5474 (1992). 18) L. Cai, A. Rohatgi, D. Yang, and M. A. El-Sayed, J. Appl. Phys. 80, 5384 (1996). 19) A. Witzman, RUBSODY Users Guide, Friedrich-Schiller-Universität, Jena, 1992. 20) G. F. Bastin and H. J. M. Heijligers, Scanning 12, 225 (1990). 21) I. Sieber, A. Schoepke, and B. Selle, Fresenius J. Anal. Chem. 353, 639 (1995). 22) F. L. Martínez, I. Mártil, G. González-Díaz, B. Selle, and I. Sieber, J. Non-Cryst. Solids 227-230, 523 (1998). 23) D. V. Tsu, G. Lucovsky, and N. J. Mantini, Phys. Rev. B 33, 7069, (1986). 24) S. G. Tomlin, J. Phys. D 1, 1667 (1968). 25) J. L. Hernández-Rojas, M. L. Lucía, I. Mártil, G. González-Díaz, J. Santamaría, and F. Sánchez-Quesada, Appl. Opt. 31, 1606 (1992). 26) J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi 15, 627 (1966). 27) R. Urbach, Phys. Rev. 92, 1324 (1953). 28) J. Robertson, Philos. Mag. B 69, 307 (1994). 29) Z. Yin and F. W. Smith, Phys. Rev. B 43, 4507 (1991). 30) F. L. Martínez, Á. del Prado, D. Bravo, F. López, I. Mártil, and G. González-Díaz, J. Vac. Sci. Technol. A 17, 1280 (1999). 31) S. A. Almeida and S. R. P. Silva, Thin Solid Films 311, 133 (1997). 32) W. R. Knolle, Thin Solid Films 168, 123 (1989). 33) T. Makino, J. Electrochem. Soc. 130, 450 (1983). 34) F. L. Martínez, I. Mártil, G. González-Díaz, A. M. Bernal-Oliva, J. M. González-Leal, and E. Márquez, Thin Solid Films 343-344, 428 (1999). 35) S. Hasegawa, Y. Amano, T. Inokuma, and Y. Kurata, J. Appl. Phys. 72, 5676 (1992). 36) M. Stutzmann, Philos. Mag. B 60, 531 (1989).
dspace.entity.typePublication
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublicationa5ab602d-705f-4080-b4eb-53772168a203
relation.isAuthorOfPublication7a3a1475-b9cc-4071-a7d3-fbf68fe1dce0
relation.isAuthorOfPublication.latestForDiscoverya5ab602d-705f-4080-b4eb-53772168a203

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martil,82libre.pdf
Size:
246.08 KB
Format:
Adobe Portable Document Format

Collections