Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Decoherence induced by an interacting spin environment in the transition from integrability to chaos

dc.contributor.authorRelaño Pérez, Armando
dc.contributor.authorDukelsky, J.
dc.contributor.authorMolina, R. A.
dc.date.accessioned2023-06-20T10:48:55Z
dc.date.available2023-06-20T10:48:55Z
dc.date.issued2007-10
dc.description©2007 The American Physical Society. This work was supported by grants FIS2006-12783-C03-01 from Ministerio de Educación y Ciencia of Spain, and 200650M012 from Comunidad de Madrid and CSIC. A.R. is supported by the Spanish program “Juan de la Cierva”. R.A.M. is supported by the I3P program funded by the European Social Fund.
dc.description.abstractWe investigate the decoherence properties of a central system composed of two spins 1/2 in contact with a spin bath. The dynamical regime of the bath ranges from a fully integrable limit to complete chaoticity. We show that the dynamical regime of the bath determines the efficiency of the decoherence process. For perturbative regimes, the integrable limit provides stronger decoherence, while in the strong coupling regime the chaotic limit becomes more efficient. We also show that the decoherence time behaves in a similar way. On the contrary, the rate of decay of magnitudes like linear entropy or fidelity does not depend on the dynamical regime of the bath. We interpret the latter results as due to a comparable complexity of the Hamiltonian for both the integrable and the fully chaotic limits.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Educación y Ciencia
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipCSIC
dc.description.sponsorshipSpanish program “Juan de la Cierva”
dc.description.sponsorshipEuropean Social Fund
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27649
dc.identifier.doi10.1103/PhysRevE.76.046223
dc.identifier.issn1539-3755
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevE.76.046223
dc.identifier.relatedurlhttp://journals.aps.org/pre/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51273
dc.issue.number4
dc.journal.titlePhysical Review E
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDFIS2006-12783-C03-01
dc.relation.projectID200650M012
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keywordEntropy Production
dc.subject.keywordQuantum
dc.subject.keywordDynamics
dc.subject.keywordSystems
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleDecoherence induced by an interacting spin environment in the transition from integrability to chaos
dc.typejournal article
dc.volume.number76
dcterms.references[1] W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003). [2] M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, UK, 2000). [3] F. M. Cucchietti, D. A. R. Dalvit, J. P. Paz, and W. H. Zurek, Phys. Rev. Lett. 91, 210403 (2003). [4] W. H. Zurek and J. P. Paz, Phys. Rev. Lett. 72, 2508 (1994); P. A. Miller and S. Sarkar, Phys. Rev. E 58, 4217 (1998); 60, 1542 (1999); A. K. Pattanayak, Phys. Rev. Lett. 83, 4526 (1999); D. Monteoliva and J. P. Paz, ibid. 85, 3373 (2000); Phys. Rev. E 64, 056238 (2001); R. A. Jalabert and H. M. Pastawski, Phys. Rev. Lett. 86, 2490 (2001); P. Bianucci, J. P. Paz, and M. Saraceno, Phys. Rev. E 65, 046226 (2002). [5] W. Zurek, Nature (London_)412, 712 (2001). [6] V. V. Dobrovitski and H. A. De Raedt. Phys. Rev. E 67, 056702 (2003). [7] R. Blume-Kohout and W. Zurek, Phys. Rev. A 68, 032104 (2003); F. C. Lombardo and P. I. Villar, ibid. 72, 034103 (2005). [8] L. Ermann, J. P. Paz, and M. Saraceno, Phys. Rev. A 73, 012302 (2006). [9] X.-W. Hou and B. Hu, Phys. Rev. A 69, 042110 (2004). [10] A. Tanaka, J. Phys. A 29, 5475 (1996); R. M. Angelo, K. Furuya, M. C. Nemes, and G. Q. Pellegrino, Phys. Rev. E 60, 5407 (1999). [11] T. Prosen and M. Znidaric, J. Phys. A 35, 1455 (2002). [12] J. Lages, V. V. Dobrovitski, M. I. Katsnelson, H. A. De Raedt, and B. N. Harmon, Phys. Rev. E 72, 026225 (2005). [13] M. K. Gould, Y.-Z. Zhang, and S.-Y. Zhao, Nucl. Phys. B 630, 492 (2002). [15] M. I. Katsnelson, V. V. Dobrovitski, H. A. De Raedt, and B. N. Harmon, Phys. Lett. A 318, 445 (2003). [17] S. Weigert and G. Muller, Chaos, Solitons Fractals 5, 1419 (1995). [18] A. Relaño, J. Dukelsky, J. M. G. Gómez, and J. Retamosa, Phys. Rev. E 70, 026208 (2004). [19] M. V. Berry and M. Tabor, Proc. R. Soc. London, Ser. A 356, 375 (1977). [20] O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett. 52, 1 (1984). [21] F. Haake, Quantum Signatures of Chaos (Springer-Verlag, Berlin, 2001). [22] A. Relaño, J. M. G. Gómez, R. A. Molina, J. Retamosa, and E. Faleiro, Phys. Rev. Lett. 89, 244102 (2002); E. Faleiro, J. M. G. Gómez, R. A. Molina, L. Muñoz, A. Relaño, and J. Retamosa, ibid. 93, 244101 (2004). [23] J. M. G. Gómez, A. Relaño, J. Retamosa, E. Faleiro, L. Salasnich, M. Vranicar, and M. Robnik, Phys. Rev. Lett. 94, 084101 (2005). [24] J. M. G. Gómez, R. A. Molina, A. Relaño, and J. Retamosa, Phys. Rev. E 66, 036209 (2002). [25] F. Marquardt, in Advances in Solid State Physics, edited by R. Haug (Springer, New York, 2006), Vol. 46.
dspace.entity.typePublication
relation.isAuthorOfPublication53fed635-944b-485a-b13a-ea8f9355b7aa
relation.isAuthorOfPublication.latestForDiscovery53fed635-944b-485a-b13a-ea8f9355b7aa

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Relano30libre.pdf
Size:
432.04 KB
Format:
Adobe Portable Document Format

Collections