Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Electron dynamics in intentionally disordered semiconductor superlattices

dc.contributor.authorDíez Alcántara, Eduardo
dc.contributor.authorSánchez, Angel
dc.contributor.authorDomínguez-Adame Acosta, Francisco
dc.contributor.authorBerman, Gennady P.
dc.date.accessioned2023-06-20T19:11:31Z
dc.date.available2023-06-20T19:11:31Z
dc.date.issued1996-11-15
dc.description© 1996 The American Physical Society. Work at Leganés and Madrid is supported by the Comisión Interministerial de Ciencia y Tecnologí a (CICyT, Spain) under Grant No. MAT95-0325. G. P. B. gratefully acknowledges partial support from Linkage Grant No. 93-1602 from NATO Special Programme Panel on Nanotechnology.
dc.description.abstractWe study the dynamical behavior of disordered quantum well-based semiconductor superlattices where the disorder is intentional and short-range correlated. We show that, whereas the transmission time of a particle grows exponentially with the number of wells in an usual disordered superlattice for any value of the incident particle energy, for specific values of the incident energy this time increases linearly when correlated disorder is included. As expected, those values of the energy coincide with a narrow subband of extended states predicted by the static calculations of Dominguez-Adame et al. [Phys. Rev. B 51, 14 359 (1994)]; such states are seen in our dynamical results to exhibit a ballistic regime, very close to the WKB approximation of a perfect superlattice. Fourier transform of the output signal for an incident Gaussian wave packet reveals a dramatic filtering of the original signal, which makes us confident that devices based on this property may be designed and used for nanotechnological applications. This is more so in view of the possibility of controlling the output band using a de-electric field, which we also discuss. In the conclusion we summarize our results and present an outlook for future developments arising from this work.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipCICyT, Spain
dc.description.sponsorshipNATO Special Programme on Nanotechnology
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27671
dc.identifier.doi10.1088/0268-1242/10/6/009
dc.identifier.issn0163-1829
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevB.54.14550
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59371
dc.issue.number20
dc.journal.titlePhysical Review B
dc.language.isoeng
dc.page.final14559
dc.page.initial14550
dc.publisherAmerican Physical Society
dc.relation.projectIDMAT95-0325
dc.relation.projectID93-1602
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordBloch Oscillations
dc.subject.keywordTimes
dc.subject.ucmFísica de materiales
dc.titleElectron dynamics in intentionally disordered semiconductor superlattices
dc.typejournal article
dc.volume.number54
dcterms.references1. A. Sánchez, F. Domínguez-Adame, G. Berman, and F. Izrailev, Phys. Rev. B 51, 6769 (1995). 2. A. Sánchez and F. Domínguez-Adame, J. Phys. A 27, 3725 (1994). 3. J. M. Ziman, Models of Disorder (Cambridge University Press, London, 1979). 4. E. Diez, A. Sánchez, and F. Domínguez-Adame, IEEE J. Quantum Electron. 31, 1919 (1995). 5. M. Büttiker and R. Landauer, Phys. Rev. Lett. 49, 1739 (1982). 6. G. P. Berman, E. N. Bulgakov, D. K. Campbell, and A. F. Sa dreev, Physica B (to be published). 7. G. Iannaccone, Phys. Rev. B 51, 4727 (1995). 8. E. E. Mendez and G. Bastard, Phys. Today 46, (6) 34 (1993). 9. F. Domínguez-Adame, A. Sánchez, and E. Diez, Phys. Rev. B 50, 17 736 (1994). 10. R. Knapp, G. Papanicolaou, and B. White, J. Stat. Phys. 63, 567 (1991). 11. See W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Wetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, New York, 1986), pp. 656–663. 12. A. M. Bouchard and M. Luban, Phys. Rev. B 52, 5105 (1995). 13. G. Iannaccone and B. Pellegrini, Phys. Rev. B 49, 16 548 (1994). 14. S. N. Evangelou and D. E. Katsanos, Phys. Lett. A 164, 456 (1992). 15. M. Holthaus, G. H. Ristow, and D. W. Hone, Phys. Rev. Lett. 75, 3914 (1995). 16. E. Díez, A. Sánchez, F. Domínguez-Adame, and G. P. Berman (unpublished).
dspace.entity.typePublication
relation.isAuthorOfPublicationbc6a5675-68c7-4ee0-b20c-8560937c1c25
relation.isAuthorOfPublicationdbc02e39-958d-4885-acfb-131220e221ba
relation.isAuthorOfPublication.latestForDiscoverydbc02e39-958d-4885-acfb-131220e221ba

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dguez-Adame122libre.pdf
Size:
188.71 KB
Format:
Adobe Portable Document Format

Collections