Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Invariant differential equations and the Adler-Gel'fand-Dikii bracket

dc.contributor.authorGonzález López, Artemio
dc.contributor.authorHernández Heredero, Rafael
dc.contributor.authorBeffa, Gloria Marí
dc.date.accessioned2023-06-20T20:09:58Z
dc.date.available2023-06-20T20:09:58Z
dc.date.issued1997-11
dc.description© 1997 American Institute of Physics. A.G-L. and R.H.H. would like to acknowledge the partial financial support of the DGES under Grant No. PB95-0401.
dc.description.abstractIn this paper we find an explicit formula for the most general vector evolution of curves on RPn−1 invariant under the projective action of SL(n, R). When this formula is applied to the projectivization of solution curves of scalar Lax operators with periodic coefficients, one obtains a corresponding evolution in the space of such operators. We conjecture that this evolution is identical to the second KdV Hamiltonian evolution under appropriate conditions. These conditions give a Hamiltonian interpretation of general vector differential invariants for the projective action of SL(n, R), namely, the SL(n, R) invariant evolution can be written so that a general vector differential invariant corresponds to the Hamiltonian pseudo-differential operator. We find common coordinates and simplify both evolutions so that one can attempt to prove the equivalence for arbitrary n .
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGES
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/32862
dc.identifier.doi10.1063/1.532162
dc.identifier.issn0022-2488
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.532162
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.relatedurlhttp://arxiv.org/abs/hep-th/9603199
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59725
dc.issue.number11
dc.journal.titleJournal of mathematical physics
dc.language.isoeng
dc.page.final5738
dc.page.initial5720
dc.publisherAmerican Institute of Physics
dc.relation.projectIDPB95-0401
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordKorteweg-devries type
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleInvariant differential equations and the Adler-Gel'fand-Dikii bracket
dc.typejournal article
dc.volume.number38
dcterms.references[AH] Ackerman, M., and Hermann, R., Sophus Lie’s 1884 Differential Invariant Paper, Math Sci Press, Brookline, Mass. (1975). [A] Adler, M., On a Trace Functional for Formal Pseudo-differential Operators and the Symplectic Structure of the KdV, Inventiones Math. 50, 219–48 (1979). [DS] Drinfel’d, V.G. and Sokolov, V.V., Lie Algebras and Equations of KdV Type, J. of Sov. Math. 30, 1975–2036 (1985). [GD] Gel’fand, I.M. and Dikii, L.A. A family of Hamiltonian structures connected with integrable nonlinear differential equations, in I.M. Gel’fand, Collected papers, Vol. 1, Springer–Verlag (1987). [H] Halphen, G.-H., Sur les invariants diff´erentiels,, in Oeuvres, Vol. 2, Gauthier– Villars, Paris (1913). [KW] Kupershmidt, B.A. and Wilson, G., Modifying Lax Equations and the Second Hamiltonian Structure, Inventiones Math. 62, 403–36 (1981). [L] Lie, S., Über Differentialinvarianten, in Gesammelte Abhandlungen, Vol. 6, B.G. Teubner, Leipzig (1927); see [AH] for an English translation. [OST] Olver, P.J., Sapiro, G., and Tannenbaum, A., Differential invariant signatures and flows in computer vision: a symmetry group approach, in Geometry-Driven Diffusion in Computer Vision, B.M. ter Haar Romeny, ed., Kluwer Acad. Publ., Dordrecht, The Netherlands (1994). [O1] Olver, P.J., Applications of Lie Groups to Differential Equations, Second Edition, Springer–Verlag, New York (1993). [O2] Olver, P.J., Equivalence, Invariance and Symmetry, Cambridge University Press, Cambridge, UK (1995). [OK] Ovsienko, V.Yu. and Khesin, B.A., Symplectic leaves of the Gel’fand–Dikii brackets and homotopy classes of non- degenerate curves, Funct. Anal. and Appl. 24 n. 1, 33– 40 (1990). [T] Tresse, A., Sur les invariants diff´erentiels des groupes continus de transformations, Acta Math. 18, 1–88 (1894). [W] Wilczynski, E.J., Projective differential geometry of curves and ruled surfaces, B.G. Teubner, Leipzig (1906). [Wi] Wilson, G., On the antiplectic pair connected with the Adler–Gel’fand–Dikii bracket, Nonlinearity 5, 109–31 (1992).
dspace.entity.typePublication
relation.isAuthorOfPublication7f260dbe-eebb-4d43-8ba9-d8fbbd5b32fc
relation.isAuthorOfPublication.latestForDiscovery7f260dbe-eebb-4d43-8ba9-d8fbbd5b32fc

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ContentServer.pdf
Size:
820.03 KB
Format:
Adobe Portable Document Format

Collections