Parallel mutation testing for large scale systems

dc.contributor.authorCerro Cañizares, Pablo
dc.contributor.authorNúñez Covarrubias, Alberto
dc.contributor.authorFilgueira, Rosa
dc.contributor.authorde Lara, Juan
dc.date.accessioned2024-07-04T16:48:56Z
dc.date.available2024-07-04T16:48:56Z
dc.date.issued2023-06-20
dc.description.abstractMutation testing is a valuable technique for measuring the quality of test suites in terms of detecting faults. However, one of its main drawbacks is its high computational cost. For this purpose, several approaches have been recently proposed to speed-up the mutation testing process by exploiting computational resources in distributed systems. However, bottlenecks have been detected when those techniques are applied in large-scale systems. This work improves the performance of mutation testing using large-scale systems by proposing a new load distribution algorithm, and parallelising different steps of the process. To demonstrate the benefits of our approach, we report on a thorough empirical evaluation, which analyses and compares our proposal with existing solutions executed in large-scale systems. The results show that our proposal outperforms the state-of-the-art distribution algorithms up to 35% in three different scenarios, reaching a reduction of the execution time of—at best—up to 99.66%.
dc.description.departmentDepto. de Sistemas Informáticos y Computación
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipProyectos del MINECO/FEDER con referencias PID2021-122270OB-I00, TED2021-129381B-C21 y PID2019-108528RB-C22
dc.description.sponsorshipProyecto de la Comunidad de Madrid "FORTE-CM" con referencia S2018/TCS-4314
dc.description.sponsorshipProyecto "BLOQUES-CM", con referencia S2018/TCS-4339, cofinanciado por los Fondos EIE de la Unión Europea y la Comunidad de Madrid
dc.description.sponsorshipProyecto de HPC-EUROPA3 (referencia INFRAIA-2016-1-730897), con el apoyo de la Acción de Investigación e Innovación de la CE en el marco del Programa H2020
dc.description.statuspub
dc.identifier.doi10.1007/S10586-023-04074-Y
dc.identifier.officialurlhttps://link.springer.com/article/10.1007/s10586-023-04074-y
dc.identifier.urihttps://hdl.handle.net/20.500.14352/105660
dc.issue.number2
dc.journal.titleCluster Computing
dc.language.isoeng
dc.page.final2097
dc.page.initial2071
dc.publisherSpringer
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.keywordMutation testing
dc.subject.keywordParallel mutation testing
dc.subject.keywordLarge scale systems
dc.subject.keywordHigh performance computing
dc.subject.keywordDistributed systems
dc.subject.keywordTesting
dc.subject.ucmSoftware
dc.subject.unesco3304.99 Otras
dc.titleParallel mutation testing for large scale systems
dc.typejournal article
dc.volume.number27
dspace.entity.typePublication
relation.isAuthorOfPublicationfbd86834-ee36-422f-b303-b72800b228f1
relation.isAuthorOfPublication739c7331-24ad-41a6-8f5b-873485fa4501
relation.isAuthorOfPublication.latestForDiscovery739c7331-24ad-41a6-8f5b-873485fa4501

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cc_anunez.pdf
Size:
2.42 MB
Format:
Adobe Portable Document Format

Collections