Nested models for categorical data
dc.contributor.author | Pardo Llorente, María del Carmen | |
dc.date.accessioned | 2023-06-20T17:07:04Z | |
dc.date.available | 2023-06-20T17:07:04Z | |
dc.date.issued | 1999-09 | |
dc.description | This work was supported by grant DGICYT PB96-0635. | |
dc.description.abstract | In this work a family of test statistics based on Burbea–Rao divergence for nested models is proposed. The asymptotic distribution of these test statistics is obtained when the unspecified parameters are estimated by maximum likelihood as well as minimum Burbea–Rao divergence. | |
dc.description.department | Depto. de Estadística e Investigación Operativa | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGICYT | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/17657 | |
dc.identifier.doi | 10.1016/S0020-0255(99)00051-1 | |
dc.identifier.issn | 0020-0255 | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/S0020025599000511 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57798 | |
dc.issue.number | 1-4 | |
dc.journal.title | Information Sciences | |
dc.language.iso | eng | |
dc.page.final | 278 | |
dc.page.initial | 269 | |
dc.publisher | Elsevier Science Inc | |
dc.relation.projectID | PB96-0635 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 519.22 | |
dc.subject.keyword | Nested models | |
dc.subject.keyword | Rφ-divergence | |
dc.subject.ucm | Estadística matemática (Matemáticas) | |
dc.subject.unesco | 1209 Estadística | |
dc.title | Nested models for categorical data | |
dc.type | journal article | |
dc.volume.number | 118 | |
dcterms.references | A. Agresti, R.F. Agresti, Statistical analysis of qualitative variation, in: K.E. Schussler (Ed.) Social Methodology, 1978, pp. 204–237 M.S. Ali, D. Silvey, A general class of coefficients of divergence of one distribution from another. J. Roy. Statist. Soc. Ser. B, 28 (1966), pp. 131–140 T.N. Bhargava, P.H. Doyle, A geometric study of diversity. J. Theoret. Biol., 43 (1974), pp. 241–251 T.N. Bhargava, V.R.R. Uppuluri, On an axiomatic derivation of Gini diversity with applications. Metron, 30-IV (1975), pp. 1–13 Y.M.M. Bishop, S.E. Fienberg, P.W. Holland, Discrete Multivariate Analysis Theory and PracticeMIT Press, New York (1975) J. Burbea, C.R. Rao, On the convexity of some divergence measures based on entropy functions. IEEE Trans.Information Theory, 28 (1982), pp. 489–495 J. Burbea, C.R. Rao, On the convexity of higher order Jensen differences based on entropy function. IEEE Trans. Information Theory, 28 (1982), pp. 961–963 J. Burbea, J-divergences and related topics.Encycl.Statist. Sci., 44 (1983), pp. 290–296 J. Burbea, The Bose–Einstein entropy of degree α and its Jensen difference. Utilitas Math., 25 (1984), pp. 225–240 C. Gini, Variabilitá e mutabilitá. Studi Economico-Giuridici della Facolta di Giiurisprudenza dell Universitá di Cagliari, a III, PArte II, 1912 M. E. Havrda, F. Charvát, Quantification method of classification processes:concept of structural α-entropy. Kybernetika, 3 (1975), pp. 30–35 J.N. Kapur, Measures of uncertainty mathematical programming and physics.J.Indian Soc.Agr. Res. Statist., 24 (1972), pp. 47–66 S. Kotz, N.M. Johnson, D.W. Boid, Series representation of quadratic forms in normal variables, I. Central Case. AMS (1967) 823–837 S.Kullback,R.Leibler, On information and sufficiency. Ann. Math. Statist., 22 (1951), pp. 79–86 F. Liese, I. Vajda, Convex Statistical Distances. Teubner, Leipzig, 1987 M.L. Menéndez, D. Morales, L. Pardo, φ-divergences and nested models. Appl. Math. Lett., 10 (5) (1997), pp. 129–132 M.C. Pardo, I. Vajda, About distances of discrete distributions satisfying the data proccesing theorem of information theory. IEEE Trans. Information Theory, 43 (4) (1997), pp. 1288–1293 M.C. Pardo, Asymptotic behaviour of an estimator based on Rao's divergence. Kybernetika, 33 (5) (1997), pp. 489–504 M.C. Pardo, On Burbea–Rao divergences based goodness-of-fit tests for multinomial models. J. Multivariate Anal., 69 (1999), pp. 65–87 C.R. Rao, Analysis of diversity: a unified approach, Technical report, 81-26, University of Pittsburgh, 1981 C.R. Rao, Diversity and dissimilarity coefficients: an unified approach. J. Theor. Pop. Biol., 21 (1982), pp. 24–43 J.N.K. Rao, A.J. Scott, The analysis of categorical data from complex sample surveys: chi-squared tests for goodness of fit and independence in two-way tables. J. Amer.Statist. Assoc., 76 (1981), pp. 221–230 F.E. Satterthwaite, An approximate distribution of estimates of variance components. Biometrics, 2 (1946), pp. 110–114 H. Scheffé, The Analysis of VarianceWiley, New York (1959) E.H. Simpson, Measurement of diversity, Nature 163 (1949) 688 I. Vajda, K. Vasek, Majorization concave entropies and comparison of experiments. Problems Control Inform. Theory, 14 (1985), pp. 105–115 | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1