Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Nested models for categorical data

dc.contributor.authorPardo Llorente, María del Carmen
dc.date.accessioned2023-06-20T17:07:04Z
dc.date.available2023-06-20T17:07:04Z
dc.date.issued1999-09
dc.descriptionThis work was supported by grant DGICYT PB96-0635.
dc.description.abstractIn this work a family of test statistics based on Burbea–Rao divergence for nested models is proposed. The asymptotic distribution of these test statistics is obtained when the unspecified parameters are estimated by maximum likelihood as well as minimum Burbea–Rao divergence.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17657
dc.identifier.doi10.1016/S0020-0255(99)00051-1
dc.identifier.issn0020-0255
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0020025599000511
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57798
dc.issue.number1-4
dc.journal.titleInformation Sciences
dc.language.isoeng
dc.page.final278
dc.page.initial269
dc.publisherElsevier Science Inc
dc.relation.projectIDPB96-0635
dc.rights.accessRightsrestricted access
dc.subject.cdu519.22
dc.subject.keywordNested models
dc.subject.keywordRφ-divergence
dc.subject.ucmEstadística matemática (Matemáticas)
dc.subject.unesco1209 Estadística
dc.titleNested models for categorical data
dc.typejournal article
dc.volume.number118
dcterms.referencesA. Agresti, R.F. Agresti, Statistical analysis of qualitative variation, in: K.E. Schussler (Ed.) Social Methodology, 1978, pp. 204–237 M.S. Ali, D. Silvey, A general class of coefficients of divergence of one distribution from another. J. Roy. Statist. Soc. Ser. B, 28 (1966), pp. 131–140 T.N. Bhargava, P.H. Doyle, A geometric study of diversity. J. Theoret. Biol., 43 (1974), pp. 241–251 T.N. Bhargava, V.R.R. Uppuluri, On an axiomatic derivation of Gini diversity with applications. Metron, 30-IV (1975), pp. 1–13 Y.M.M. Bishop, S.E. Fienberg, P.W. Holland, Discrete Multivariate Analysis Theory and PracticeMIT Press, New York (1975) J. Burbea, C.R. Rao, On the convexity of some divergence measures based on entropy functions. IEEE Trans.Information Theory, 28 (1982), pp. 489–495 J. Burbea, C.R. Rao, On the convexity of higher order Jensen differences based on entropy function. IEEE Trans. Information Theory, 28 (1982), pp. 961–963 J. Burbea, J-divergences and related topics.Encycl.Statist. Sci., 44 (1983), pp. 290–296 J. Burbea, The Bose–Einstein entropy of degree α and its Jensen difference. Utilitas Math., 25 (1984), pp. 225–240 C. Gini, Variabilitá e mutabilitá. Studi Economico-Giuridici della Facolta di Giiurisprudenza dell Universitá di Cagliari, a III, PArte II, 1912 M. E. Havrda, F. Charvát, Quantification method of classification processes:concept of structural α-entropy. Kybernetika, 3 (1975), pp. 30–35 J.N. Kapur, Measures of uncertainty mathematical programming and physics.J.Indian Soc.Agr. Res. Statist., 24 (1972), pp. 47–66 S. Kotz, N.M. Johnson, D.W. Boid, Series representation of quadratic forms in normal variables, I. Central Case. AMS (1967) 823–837 S.Kullback,R.Leibler, On information and sufficiency. Ann. Math. Statist., 22 (1951), pp. 79–86 F. Liese, I. Vajda, Convex Statistical Distances. Teubner, Leipzig, 1987 M.L. Menéndez, D. Morales, L. Pardo, φ-divergences and nested models. Appl. Math. Lett., 10 (5) (1997), pp. 129–132 M.C. Pardo, I. Vajda, About distances of discrete distributions satisfying the data proccesing theorem of information theory. IEEE Trans. Information Theory, 43 (4) (1997), pp. 1288–1293 M.C. Pardo, Asymptotic behaviour of an estimator based on Rao's divergence. Kybernetika, 33 (5) (1997), pp. 489–504 M.C. Pardo, On Burbea–Rao divergences based goodness-of-fit tests for multinomial models. J. Multivariate Anal., 69 (1999), pp. 65–87 C.R. Rao, Analysis of diversity: a unified approach, Technical report, 81-26, University of Pittsburgh, 1981 C.R. Rao, Diversity and dissimilarity coefficients: an unified approach. J. Theor. Pop. Biol., 21 (1982), pp. 24–43 J.N.K. Rao, A.J. Scott, The analysis of categorical data from complex sample surveys: chi-squared tests for goodness of fit and independence in two-way tables. J. Amer.Statist. Assoc., 76 (1981), pp. 221–230 F.E. Satterthwaite, An approximate distribution of estimates of variance components. Biometrics, 2 (1946), pp. 110–114 H. Scheffé, The Analysis of VarianceWiley, New York (1959) E.H. Simpson, Measurement of diversity, Nature 163 (1949) 688 I. Vajda, K. Vasek, Majorization concave entropies and comparison of experiments. Problems Control Inform. Theory, 14 (1985), pp. 105–115
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PardoCarmen11.pdf
Size:
115.09 KB
Format:
Adobe Portable Document Format

Collections