On the Birman invariants of Heegaard splittings

dc.contributor.authorMontesinos Amilibia, José María
dc.contributor.authorSafont Edo, Carmen
dc.date.accessioned2023-06-20T17:03:37Z
dc.date.available2023-06-20T17:03:37Z
dc.date.issued1988-03
dc.description.abstractJ. Birman had observed that the homological information about a given Heegaard splitting of genus g is contained in a double coset in the group of symplectic 2g×2g integer matrices with respect to a suitable subgroup, and found a determinant invariant of this double coset. We obtain complete invariants of these double cosets by characterizing it in terms of the linking form of the manifold lifted to a handlebody of the Heegaard splitting and then finding complete invariants of this lifted form.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17092
dc.identifier.issn0030-8730
dc.identifier.officialurlhttp://projecteuclid.org/euclid.pjm/1102689797
dc.identifier.relatedurlhttp://pjm.math.berkeley.edu/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57704
dc.issue.number1
dc.journal.titlePacific Journal of Mathematics
dc.language.isoeng
dc.page.final142
dc.page.initial113
dc.publisherPacific Journal of Mathematics
dc.rights.accessRightsopen access
dc.subject.cdu515.163
dc.subject.keyword3-dimensional manifolds
dc.subject.keywordHeegaard splitting
dc.subject.keywordlinking form
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleOn the Birman invariants of Heegaard splittings
dc.typejournal article
dc.volume.number132
dcterms.referencesH. Bass, K-heoryandstable algebra,PublicationsMathematiques IHES no. 22 (1964). J. S. Birman, On the equivalence of Heegaard splittings of closed orientable 3-manifolds,Ann. Math. Studies, 84(1975), 137-139. J. S. Birman, Lecture notes for the CBMS conference at Blacksburg, Va.,1977. J.S.Birmanand D.Johnson, Homology Heegaardsplittings, manuscript. J. S. Birman, F. Gonzalez-Acuna and J. Montesinos, Minimal Heegaard splittings of 3-manifolds are not unique, Michigan Math. J., 23 (1976),97-103. J. S. Birman and H.Hilden, Heegaard splittings of branched coverings of S3, Trans. Amer. Math. Soc, 213 (1975),315-352. F. Bonahon and S. P. Otal, Scindementsde Heegaarddes spaces lenticulares,C. R. Acad. Sci. Paris, 294 (1982),585-587. E. Burger, Uber gruppen mit Verschlingungen, J. Reine Angew. Math., 188 (1950), 193-200. D. Cooper, Signatures of surfaces in 3-manfolds and applications to knot and link cobordism, Ph.D., Warwick University (1982). R. Engmann, Nicht homeomorphe Heegaard Zerlegungen von Geslecht 2 der Zusammenhngenden Summe zweier Linsenrame, Abh. Math. Sem. Univ. Hamburg, 35 (1970), 33-38. C. Hodgson and J. H. Rubinstein, Involutions and Isotopies of Lens Spaces, Springer LNM #1144(1985). A. Kawauchi and S. Kojima, Algebraic classification of linking pairings on 3-manifolds, Math. Ann.,253 (1980), 29-92. J. Montesinos, Minimal plat representations of prime knots and links are not unique, Canad. J. Math., 28 (1976), 161-167. J. Montesinos, Revetements doubles ramifies de noeuds, varietes de Seifert et diagrams de Heegaard, Polycopie Orsay (1979). J. Montesinos and C. Safont, On the Birman invariants of Heegaard splittings, MSRI preprint #14102-85, November, 1985. C. Safont, Ph.D. Thesis, University of Zaragoza, 1984. H. Seifert, Verschlingungsinvarianten, Sitzumgsberichte der Preuss. Adad. der Wiss., Berlin, (1933),811-828. H. Seifert-W. Threlfall, A Textbook of Topology,Academic Press, N.Y. (1980) C. T. C. Wall, Quadratic forms onfinite groups, and related topics, Topology, 2 (1964),281-298. F. Waldhausen, Heegaard Zerlegungen der 3-sphre, Topology, 7 (1968), 195-203.
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montesinos02.pdf
Size:
2.24 MB
Format:
Adobe Portable Document Format

Collections