Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Predicting students' knowledge after playing a serious game based on learning analytics data: A case study

dc.contributor.authorAlonso Fernández, Cristina
dc.contributor.authorMartínez Ortiz, Iván
dc.contributor.authorCaballero Roldán, Rafael
dc.contributor.authorFreire Morán, Manuel
dc.contributor.authorFernández Manjón, Baltasar
dc.date.accessioned2024-02-12T11:44:52Z
dc.date.available2024-02-12T11:44:52Z
dc.date.issued2019
dc.description.abstractSerious games have proven to be a powerful tool in education to engage, motivate, and help students learn. However, the change in student knowledge after playing games is usually measured with traditional (paper) prequestionnaires–postquestionnaires. We propose a combination of game learning analytics and data mining techniques to predict knowledge change based on in-game student interactions. We have tested this approach in a case study for which we have conducted preexperiments–postexperiments with 227 students playing a previously validated serious game on first aid techniques. We collected student interaction data while students played, using a game learning analytics infrastructure and the standard data format Experience API for Serious Games. After data collection, we developed and tested prediction models to determine whether knowledge, given as posttest results, can be accurately predicted. Additionally, we compared models both with and without pretest information to determine the importance of previous knowledge when predicting postgame knowledge. The high accuracy of the obtained prediction models suggests that serious games can be used not only to teach but also to measure knowledge acquisition after playing. This will simplify serious games application for educational settings and especially in the classroom easing teachers' evaluation tasks.
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationAlonso‐Fernández, Cristina, et al. «Predicting Students’ Knowledge after Playing a Serious Game Based on Learning Analytics Data: A Case Study». Journal of Computer Assisted Learning, vol. 36, n.o 3, junio de 2020, pp. 350-58. https://doi.org/10.1111/jcal.12405.
dc.identifier.doi10.1111/jcal.12405
dc.identifier.issn1365-2729
dc.identifier.officialurlhttps://doi.org/10.1111/jcal.12405
dc.identifier.urihttps://hdl.handle.net/20.500.14352/101230
dc.issue.number3
dc.journal.titleJournal of Computer Assisted Learning
dc.language.isoeng
dc.page.final358
dc.page.initial350
dc.publisherWiley
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu004.8
dc.subject.keywordLearning analytics
dc.subject.keywordxAPI
dc.subject.keywordSerious games
dc.subject.keywordGame-based learning
dc.subject.keywordAssessment
dc.subject.keywordE-learning
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmEducación
dc.subject.unesco1203.10 Enseñanza Con Ayuda de Ordenador
dc.titlePredicting students' knowledge after playing a serious game based on learning analytics data: A case study
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number36
dspace.entity.typePublication
relation.isAuthorOfPublication3e9733bf-a280-423e-9e16-0689893aa498
relation.isAuthorOfPublicationdea963b6-c09b-4f13-a535-76661dab0d5d
relation.isAuthorOfPublicationd17b0355-2695-449e-b06e-a34f4e27f120
relation.isAuthorOfPublication31da3433-5b95-45a0-badf-a639e7f3e4b8
relation.isAuthorOfPublication7aa3aa1c-0f71-4c2f-8f82-275aa14354b1
relation.isAuthorOfPublication.latestForDiscovery3e9733bf-a280-423e-9e16-0689893aa498

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Predicting_students'_knowledge.pdf
Size:
1.59 MB
Format:
Adobe Portable Document Format

Collections