C^∞ functions in infinite dimension and linear partial differential-difference equations with constant coefficients
dc.contributor.author | Martínez Ansemil, José María | |
dc.contributor.author | Perrot, Bernard | |
dc.date.accessioned | 2023-06-21T02:06:32Z | |
dc.date.available | 2023-06-21T02:06:32Z | |
dc.date.issued | 1983-03 | |
dc.description.abstract | J.-F. Colombeau and S. Ponte [same journal 5 (1982), no. 2, 123–135;] defined and studied a dense linear subspace E(E) (with a stronger complete locally convex topology) of the space E(E) of all (Silva) C^∞-functions on a real nuclear bornological vector space E which is separated by its dual. The main point was that the "natural generalization'' of the classical Paley-Wiener-Schwartz theorem holds for the Fourier transform of E′(E) (but not for E′(E)). The authors of the present paper study (nonzero) linear partial differential-difference operators D with constant coefficients on E(E). If E is a real (DFN)-space, they prove that D is a surjective continuous operator on E(E) and that each solution u∈E(E) of Du=0 is the limit in E(E) of exponential polynomial solutions. Just like these results, also the general method of proof is similar to the one used in the classical case: The equation Df=g, g∈E(E), is transposed and, using Fourier transforms, the proof of the surjectivity of D is reduced to a division theorem. (Here the main results in the article of Colombeau and Ponte [op. cit.], as well as some results of L. Ehrenpreis, are used; of course, the Hahn-Banach theorem is needed, too.) Finally, the authors show an extension theorem analogous to the one (due to P. J. Boland ) in the holomorphic case; viz., for a closed subspace F of a real (DFN)-space E, the restriction map from E(E) to E(F) is surjective. | en |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22114 | |
dc.identifier.citation | Martínez Ansemil, J. M. & Perrot, B. «C∞ Functions in Infinite Dimension and Linear Partial Differential Difference Equations with Constant Coefficients». Results in Mathematics, vol. 6, n.o 1-2, marzo de 1983, pp. 119-34. DOI.org (Crossref), https://doi.org/10.1007/BF03323332. | |
dc.identifier.doi | 10.1007/BF03323332 | |
dc.identifier.issn | 1422-6383 | |
dc.identifier.officialurl | https//doi.org/10.1007/BF03323332 | |
dc.identifier.relatedurl | http://link.springer.com/article/10.1007/BF03323332 | |
dc.identifier.relatedurl | http://www.springer.com/birkhauser/mathematics/journal/25 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/64869 | |
dc.issue.number | 1-2 | |
dc.journal.title | Results in Mathematics | |
dc.page.final | 134 | |
dc.page.initial | 119 | |
dc.publisher | Birkhäuser Verlag | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 517.98 | |
dc.subject.keyword | Existence and approximation results | |
dc.subject.keyword | Solutions of linear partial differential-difference equations with constant coefficients | |
dc.subject.keyword | Silva C ∞ -functions on a nuclear locally convex space | |
dc.subject.keyword | Hahn-Banach extension theorem | |
dc.subject.keyword | DFN space | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | C^∞ functions in infinite dimension and linear partial differential-difference equations with constant coefficients | en |
dc.type | journal article | |
dc.volume.number | 6 | |
dcterms.references | P. J. Boland, Holomorphic functions on nuclear spaces. Trans. Amer. Math. Soc. 209 (1975), 275–281. J. F. Colombeau and S. Ponte, An infinite dimensional version of the Paley-Wiener-Schwartz isomorphism. Resultate der Mathematik, 5 (1982), 123–135. L. Ehrenpreis, Solution of some problems of division. Part II. American Journal of Mathematics 77 (1975), 287–292. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | e94d6c20-a1ea-4d41-aa71-df8bbd1ad67d | |
relation.isAuthorOfPublication.latestForDiscovery | e94d6c20-a1ea-4d41-aa71-df8bbd1ad67d |