Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

C^∞ functions in infinite dimension and linear partial differential-difference equations with constant coefficients

dc.contributor.authorMartínez Ansemil, José María
dc.contributor.authorPerrot, Bernard
dc.date.accessioned2023-06-21T02:06:32Z
dc.date.available2023-06-21T02:06:32Z
dc.date.issued1983-03
dc.description.abstractJ.-F. Colombeau and S. Ponte [same journal 5 (1982), no. 2, 123–135;] defined and studied a dense linear subspace E(E) (with a stronger complete locally convex topology) of the space E(E) of all (Silva) C^∞-functions on a real nuclear bornological vector space E which is separated by its dual. The main point was that the "natural generalization'' of the classical Paley-Wiener-Schwartz theorem holds for the Fourier transform of E′(E) (but not for E′(E)). The authors of the present paper study (nonzero) linear partial differential-difference operators D with constant coefficients on E(E). If E is a real (DFN)-space, they prove that D is a surjective continuous operator on E(E) and that each solution u∈E(E) of Du=0 is the limit in E(E) of exponential polynomial solutions. Just like these results, also the general method of proof is similar to the one used in the classical case: The equation Df=g, g∈E(E), is transposed and, using Fourier transforms, the proof of the surjectivity of D is reduced to a division theorem. (Here the main results in the article of Colombeau and Ponte [op. cit.], as well as some results of L. Ehrenpreis, are used; of course, the Hahn-Banach theorem is needed, too.) Finally, the authors show an extension theorem analogous to the one (due to P. J. Boland ) in the holomorphic case; viz., for a closed subspace F of a real (DFN)-space E, the restriction map from E(E) to E(F) is surjective.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22114
dc.identifier.citationMartínez Ansemil, J. M. & Perrot, B. «C∞ Functions in Infinite Dimension and Linear Partial Differential Difference Equations with Constant Coefficients». Results in Mathematics, vol. 6, n.o 1-2, marzo de 1983, pp. 119-34. DOI.org (Crossref), https://doi.org/10.1007/BF03323332.
dc.identifier.doi10.1007/BF03323332
dc.identifier.issn1422-6383
dc.identifier.officialurlhttps//doi.org/10.1007/BF03323332
dc.identifier.relatedurlhttp://link.springer.com/article/10.1007/BF03323332
dc.identifier.relatedurlhttp://www.springer.com/birkhauser/mathematics/journal/25
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64869
dc.issue.number1-2
dc.journal.titleResults in Mathematics
dc.page.final134
dc.page.initial119
dc.publisherBirkhäuser Verlag
dc.rights.accessRightsmetadata only access
dc.subject.cdu517.98
dc.subject.keywordExistence and approximation results
dc.subject.keywordSolutions of linear partial differential-difference equations with constant coefficients
dc.subject.keywordSilva C ∞ -functions on a nuclear locally convex space
dc.subject.keywordHahn-Banach extension theorem
dc.subject.keywordDFN space
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleC^∞ functions in infinite dimension and linear partial differential-difference equations with constant coefficientsen
dc.typejournal article
dc.volume.number6
dcterms.referencesP. J. Boland, Holomorphic functions on nuclear spaces. Trans. Amer. Math. Soc. 209 (1975), 275–281. J. F. Colombeau and S. Ponte, An infinite dimensional version of the Paley-Wiener-Schwartz isomorphism. Resultate der Mathematik, 5 (1982), 123–135. L. Ehrenpreis, Solution of some problems of division. Part II. American Journal of Mathematics 77 (1975), 287–292.
dspace.entity.typePublication
relation.isAuthorOfPublicatione94d6c20-a1ea-4d41-aa71-df8bbd1ad67d
relation.isAuthorOfPublication.latestForDiscoverye94d6c20-a1ea-4d41-aa71-df8bbd1ad67d

Download

Collections