Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Computational Modeling of Tensile Stress Effects on the Structure and Stability of Prototypical Covalent and Layered Materials

dc.contributor.authorChorfi, Hocine
dc.contributor.authorLobato Fernández, Álvaro
dc.contributor.authorBoudjada, Fahima
dc.contributor.authorSalvadó, Miguel A.
dc.contributor.authorFranco, Ruth
dc.contributor.authorGarcía Baonza, Valentín
dc.contributor.authorRecio, J. Manuel
dc.date.accessioned2023-06-17T12:37:21Z
dc.date.available2023-06-17T12:37:21Z
dc.date.issued2019-10-18
dc.description.abstractUnderstanding the stability limit of crystalline materials under variable tensile stress conditions is of capital interest for technological applications. In this study, we present results from first-principles density functional theory calculations that quantitatively account for the response of selected covalent and layered materials to general stress conditions. In particular, we have evaluated the ideal strength along the main crystallographic directions of 3C and 2H polytypes of SiC, hexagonal ABA stacking of graphite and 2H-MoS 2 . Transverse superimposed stress on the tensile stress was taken into account in order to evaluate how the critical strength is affected by these multi-load conditions. In general, increasing transverse stress from negative to positive values leads to the expected decreasing of the critical strength. Few exceptions found in the compressive stress region correlate with the trends in the density of bonds along the directions with the unexpected behavior. In addition, we propose a modified spinodal equation of state able to accurately describe the calculated stress–strain curves. This analytical function is of general use and can also be applied to experimental data anticipating critical strengths and strain values, and for providing information on the energy stored in tensile stress processes.
dc.description.departmentDepto. de Química Física
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)/FEDER
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)/FEDER
dc.description.sponsorshipPrincipado de Asturias/FICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/66765
dc.identifier.doi10.3390/nano9101483
dc.identifier.issn2079-4991
dc.identifier.officialurlhttps://doi.org/10.3390/nano9101483
dc.identifier.relatedurlhttps://www.mdpi.com/2079-4991/9/10/1483
dc.identifier.urihttps://hdl.handle.net/20.500.14352/12641
dc.issue.number10
dc.journal.titleNanomaterials
dc.language.isoeng
dc.page.initial1483
dc.publisherMDPI
dc.relation.projectIDCTQ2015-67755-C2-R
dc.relation.projectIDPGC2018-094814-B-C22
dc.relation.projectIDGRUPIN14-049
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordideal strength
dc.subject.keywordquantum-mechanical calculations
dc.subject.keywordSiC
dc.subject.keywordgraphite
dc.subject.keywordmolybdenum disulfide
dc.subject.keywordspinodal equation of state
dc.subject.ucmQuímica física (Física)
dc.subject.ucmQuímica física (Química)
dc.subject.unesco2210 Química Física
dc.titleComputational Modeling of Tensile Stress Effects on the Structure and Stability of Prototypical Covalent and Layered Materials
dc.typejournal article
dc.volume.number9
dspace.entity.typePublication
relation.isAuthorOfPublication64eee527-573c-426e-b543-11d4c938309e
relation.isAuthorOfPublication73d18024-91cf-4d78-8f32-ad7b08310be1
relation.isAuthorOfPublication.latestForDiscovery64eee527-573c-426e-b543-11d4c938309e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nanomaterials-09-01483.pdf
Size:
360.13 KB
Format:
Adobe Portable Document Format

Collections