A necessary condition for Sobolev extension domains in higher dimensions
| dc.contributor.author | Rajala, Tapio | |
| dc.contributor.author | Takanen, Jyrki | |
| dc.contributor.author | García Bravo, Miguel | |
| dc.date.accessioned | 2025-07-14T10:09:29Z | |
| dc.date.available | 2025-07-14T10:09:29Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract | We give a necessary condition for a domain to have a bounded extension operator from 𝐿1,𝑝(𝛺) to 𝐿1,𝑝(R𝑛) for the range 1 < 𝑝 < 2. The condition is given in terms of a power of the distance to the boundary of 𝛺 integrated along the measure theoretic boundary of a set of locally finite perimeter and its extension. This generalizes a characterizing curve condition for planar simply connected domains, and a condition for 𝑊1,1-extensions. We use the necessary condition to give a quantitative version of the curve condition. We also construct an example of an extension domain in R3 that is homeomorphic to a ball and has 3-dimensional boundary. | |
| dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
| dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
| dc.description.faculty | Fac. de Ciencias Matemáticas | |
| dc.description.refereed | TRUE | |
| dc.description.sponsorship | Ministerio de Ciencia | |
| dc.description.status | pub | |
| dc.identifier.doi | 10.1016/j.na.2023.113446 | |
| dc.identifier.officialurl | https://doi.org/10.1016/j.na.2023.113446 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/122493 | |
| dc.journal.title | Nonlinear Analysis | |
| dc.language.iso | eng | |
| dc.page.initial | 113446 (22) | |
| dc.publisher | Elsevier | |
| dc.relation.projectID | PID2022-138758NB-I00 | |
| dc.rights.accessRights | open access | |
| dc.subject.keyword | Sobolev extension | |
| dc.subject.ucm | Ciencias | |
| dc.subject.unesco | 12 Matemáticas | |
| dc.title | A necessary condition for Sobolev extension domains in higher dimensions | |
| dc.type | journal article | |
| dc.volume.number | 240 | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | cfa32fef-8467-4320-9632-85e4db107086 | |
| relation.isAuthorOfPublication.latestForDiscovery | cfa32fef-8467-4320-9632-85e4db107086 |


