A necessary condition for Sobolev extension domains in higher dimensions

dc.contributor.authorRajala, Tapio
dc.contributor.authorTakanen, Jyrki
dc.contributor.authorGarcía Bravo, Miguel
dc.date.accessioned2025-07-14T10:09:29Z
dc.date.available2025-07-14T10:09:29Z
dc.date.issued2024
dc.description.abstractWe give a necessary condition for a domain to have a bounded extension operator from 𝐿1,𝑝(𝛺) to 𝐿1,𝑝(R𝑛) for the range 1 < 𝑝 < 2. The condition is given in terms of a power of the distance to the boundary of 𝛺 integrated along the measure theoretic boundary of a set of locally finite perimeter and its extension. This generalizes a characterizing curve condition for planar simply connected domains, and a condition for 𝑊1,1-extensions. We use the necessary condition to give a quantitative version of the curve condition. We also construct an example of an extension domain in R3 that is homeomorphic to a ball and has 3-dimensional boundary.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia
dc.description.statuspub
dc.identifier.doi10.1016/j.na.2023.113446
dc.identifier.officialurlhttps://doi.org/10.1016/j.na.2023.113446
dc.identifier.urihttps://hdl.handle.net/20.500.14352/122493
dc.journal.titleNonlinear Analysis
dc.language.isoeng
dc.page.initial113446 (22)
dc.publisherElsevier
dc.relation.projectIDPID2022-138758NB-I00
dc.rights.accessRightsopen access
dc.subject.keywordSobolev extension
dc.subject.ucmCiencias
dc.subject.unesco12 Matemáticas
dc.titleA necessary condition for Sobolev extension domains in higher dimensions
dc.typejournal article
dc.volume.number240
dspace.entity.typePublication
relation.isAuthorOfPublicationcfa32fef-8467-4320-9632-85e4db107086
relation.isAuthorOfPublication.latestForDiscoverycfa32fef-8467-4320-9632-85e4db107086

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
sobolev_extension-pre.pdf
Size:
305.57 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
sobolev_extension-pub.pdf
Size:
713.39 KB
Format:
Adobe Portable Document Format

Collections