Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Comparison between Machine Learning and Physical Models Applied to the Evaluation of Co-Seismic Landslide Hazard

dc.contributor.authorRomán Herrera, José Carlos
dc.contributor.authorRodríguez Peces, Martín Jesús
dc.contributor.authorGarzón Roca, Julio
dc.date.accessioned2023-12-04T17:57:55Z
dc.date.available2023-12-04T17:57:55Z
dc.date.issued2023
dc.description.abstractA comparative methodology between advanced statistical tools and physical-based methods is carried out to ensure their reliability and objectivity for the evaluation of co-seismic landslide hazard maps. To do this, an inventory of landslides induced by the 2011 Lorca earthquake is used to highlight the usefulness of these methods to improve earthquake-induced landslide hazard analyses. Various statistical models, such as logistic regression, random forest, artificial neural network, and support vector machine, have been employed for co-seismic landslide susceptibility mapping. The results demonstrate that machine learning techniques using principal components (especially, artificial neural network and support vector machine) yield better results compared to other models. In particular, random forest shows poor results. Artificial neural network and support vector machine approaches are compared to the results of physical-based methods in the same area, suggesting that machine learning methods can provide better results for developing co-seismic landslide susceptibility maps. The application of different advanced statistical models shows the need for validation with an actual inventory of co-seismic landslides to ensure reliability and objectivity. In addition, statistical methods require a great amount of data. The results establish effective land planning and hazard management strategies in seismic areas to minimize the damage of future co-seismic landslides.eng
dc.description.departmentDepto. de Geodinámica, Estratigrafía y Paleontología
dc.description.facultyFac. de Ciencias Geológicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.identifier.citationRomán-Herrera, José Carlos, et al. «Comparison between Machine Learning and Physical Models Applied to the Evaluation of Co-Seismic Landslide Hazard». Applied Sciences, vol. 13, n.o 14, julio de 2023, p. 8285. DOI.org (Crossref), https://doi.org/10.3390/app13148285.
dc.identifier.doi10.3390/app13148285
dc.identifier.essn2076-3417
dc.identifier.officialurlhttps://doi.org/10.3390/app13148285
dc.identifier.relatedurlhttps://www.mdpi.com/2076-3417/13/14/8285
dc.identifier.urihttps://hdl.handle.net/20.500.14352/91076
dc.issue.number8285
dc.journal.titleApplied Sciences
dc.language.isoeng
dc.publisherMDPI
dc.relation.projectIDinfo:eu-repo/grantAgreement/PID2021-124155NB-C31
dc.relation.projectIDinfo:eu-repo/grantAgreement/UCM-910368
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu624.121.542
dc.subject.keywordMachine learning
dc.subject.keywordNewmark displacement
dc.subject.keywordCo-seismic landslide
dc.subject.keywordLogistic regression
dc.subject.keywordRandom forest
dc.subject.keywordArtificial neural network
dc.subject.keywordSupport vector machine
dc.subject.ucmGeodinámica
dc.subject.unesco2506.03 Geología Aplicada a la Ingeniería
dc.subject.unesco2506.04 Geología Ambiental
dc.titleComparison between Machine Learning and Physical Models Applied to the Evaluation of Co-Seismic Landslide Hazard
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number13
dspace.entity.typePublication
relation.isAuthorOfPublicationc7570f72-f355-48f4-8aab-c734b04b9044
relation.isAuthorOfPublication014f42c3-23e1-4b7c-be9a-53dedeac0559
relation.isAuthorOfPublication.latestForDiscoveryc7570f72-f355-48f4-8aab-c734b04b9044

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Machine_Learning_and_Physical_Models.pdf
Size:
11.6 MB
Format:
Adobe Portable Document Format

Collections