Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The sensitivity of superrotation to the satitude of baroclinic forcing in a terrestrial dry dynamical core

dc.contributor.authorZurita Gotor, Pablo
dc.contributor.authorAnaya Benlliure, Álvaro
dc.contributor.authorHeld, Isaac M.
dc.date.accessioned2023-06-22T12:29:29Z
dc.date.available2023-06-22T12:29:29Z
dc.date.issued2022-05
dc.description© 2022 American Meteorological Society. This work was funded by the National Science Foundation, grant AGS-1733818. P.Z-G acknowledges funding by Santander UCM Grant PR87/19-22537 for the workstation in which the simulations were performed. We thank J. Schröttle and two anonymous reviewers for suggestions that improved the manuscript.
dc.description.abstractPrevious studies have shown that Kelvin-Rossby instability is a viable mechanism for producing equatorial superrotation in small and/or slowly rotating planets. It is shown in this paper that this mechanism can also produce superrotation with terrestrial parameters when the baroclinic forcing moves to low latitudes, explaining previous results by Williams. The transition between superrotating and subrotating flow occurs abruptly as the baroclinic forcing moves poleward. Although Kelvin-Rossby instability weakens when the baroclinic zone moves away from the equator, the key factor explaining the abrupt transition is the change in the baroclinic eddies. When differential heating is contained within the tropics, baroclinic eddies do not decelerate the subtropical jet and the upper-tropospheric flow approximately conserves angular momentum, providing conditions favorable for Kelvin-Rossby instability. In contrast, when baroclinic eddies are generated in the extratropics, they decelerate the subtropical jet and prevent the Kelvin-Rossby coupling. Due to this sensitivity to baroclinic eddies the system exhibits hysteresis: near the transition parameter, extratropical eddies can prevent superrotation when they are initially present.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUniversidad Complutense de Madrid/Banco de Santander
dc.description.sponsorshipNational Science Foundation
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/75591
dc.identifier.doi10.1175/JAS-D-21-0269.1
dc.identifier.issn0022-4928
dc.identifier.officialurlhttp://dx.doi.org/10.1175/JAS-D-21-0269.1
dc.identifier.relatedurlhttps://journals.ametsoc.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/72665
dc.issue.number5
dc.journal.titleJournal of the atmospheric sciences
dc.language.isoeng
dc.page.final1323
dc.page.initial1311
dc.publisherAmerican Meteorological Society
dc.relation.projectIDPR87/19-22537
dc.relation.projectIDAGS-1733818
dc.rights.accessRightsopen access
dc.subject.cdu52
dc.subject.keywordShallow-water model
dc.subject.keywordEquatorial superrotation
dc.subject.keywordGeneral-circulation
dc.subject.keywordAbrupt transition
dc.subject.keywordInstability
dc.subject.keywordVenues
dc.subject.keywordMaintenance
dc.subject.keywordAtmospheres
dc.subject.keywordPlanets
dc.subject.keywordSurface
dc.subject.ucmGeofísica
dc.subject.unesco2507 Geofísica
dc.titleThe sensitivity of superrotation to the satitude of baroclinic forcing in a terrestrial dry dynamical core
dc.typejournal article
dc.volume.number79
dspace.entity.typePublication
relation.isAuthorOfPublicationbd71e5e1-d247-49a1-be1d-3915a3ef5347
relation.isAuthorOfPublication.latestForDiscoverybd71e5e1-d247-49a1-be1d-3915a3ef5347

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Zurita 13 postprint.pdf
Size:
2.84 MB
Format:
Adobe Portable Document Format

Collections