On the Set of Locally Convex Topologies Compatible with a Given Topology on a Vector Space: Cardinality Aspects
dc.contributor.author | Martín Peinador, Elena | |
dc.contributor.author | Tarieladze, V. | |
dc.date.accessioned | 2023-06-18T06:56:24Z | |
dc.date.available | 2023-06-18T06:56:24Z | |
dc.date.issued | 2016 | |
dc.description.abstract | For a topological vector space (X, τ ), we consider the family LCT (X, τ ) of all locally convex topologies defined on X, which give rise to the same continuous linear functionals as the original topology τ . We prove that for an infinite-dimensional reflexive Banach space (X, τ ), the cardinality of LCT (X, τ ) is at least c. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Unión Europea. FP7 | |
dc.description.sponsorship | Ministerio de Economía y Competitividad (MINECO) | |
dc.description.sponsorship | Shota Rustaveli National Science Foundation gran | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/39260 | |
dc.identifier.doi | 10.1007/s10958-016-2917-8 | |
dc.identifier.issn | 10723374 | |
dc.identifier.officialurl | http://link.springer.com/article/10.1007%2Fs10958-016-2917-8 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/24630 | |
dc.issue.number | 4 | |
dc.journal.title | Journal of Mathematical Sciences | |
dc.language.iso | eng | |
dc.page.final | 579 | |
dc.page.initial | 577 | |
dc.publisher | Springer New York | |
dc.relation.projectID | LIE-DIFF-GEOM (317721) | |
dc.relation.projectID | MTM2013-42486-P | |
dc.relation.projectID | FR/539/5-100/13 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512 | |
dc.subject.ucm | Álgebra | |
dc.subject.unesco | 1201 Álgebra | |
dc.title | On the Set of Locally Convex Topologies Compatible with a Given Topology on a Vector Space: Cardinality Aspects | |
dc.type | journal article | |
dc.volume.number | 216 | |
dcterms.references | 1. F. Albiac and N. J. Kalton, Topics in Banach SpaceTheory, Grad. Texts Math., 233, SpringerVerlag, New York (2006). 2. R. Whitley, “Mathematical notes: Projecting m onto c0,” Am. Math. Mon., 73, No. 3, 285–286 (1966). 3. W. Sierpinski, Cardinal and Ordinal Numbers, Monogr. Mat., 34, Panstowe Wydawnictwo Naukowe, Warszawa (1965). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 0074400c-5caa-43fa-9c45-61c4b6f02093 | |
relation.isAuthorOfPublication.latestForDiscovery | 0074400c-5caa-43fa-9c45-61c4b6f02093 |
Download
Original bundle
1 - 1 of 1