Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Tourism destination events classifier based on artificial intelligence techniques

dc.contributor.authorCamacho-Ruiz, Miguel
dc.contributor.authorCarrasco González, Ramón Alberto
dc.date.accessioned2025-01-14T11:47:39Z
dc.date.available2025-01-14T11:47:39Z
dc.date.issued2023
dc.description.abstractIdentifying client needs to provide optimal services is crucial in tourist destination management. The events held in tourist destinations may help to meet those needs and thus contribute to tourist satisfaction. As with product management, the creation of hierarchical catalogs to classify those events can aid event management. The events that can be found on the internet are listed in dispersed, heterogeneous sources, which makes direct classification a difficult, time-consuming task. The main aim of this work is to create a novel process for automatically clasisifying an eclectic variety of tourist events using a hierarchical taxonomy, which can be applied to support tourist destination management. Leveraging data science methods such as CRISP-DM, supervised machine learning, and natural language processing techniques, the automatic classification process proposed here allows the creation of a normalized catalog across very different geographical regions. Therefore, we can build catalogs with consistent filters, allowing users to find events regardless of the event categories assigned at source, if any. This is very valuable for companies that offer this kind of information across multiple regions, such as airlines, travel
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationCamacho-Ruiz, M., Carrasco, R.A., Fernández-Avilés, G., LaTorre, A., 2023. Tourism destination events classifier based on artificial intelligence techniques. Appl. Soft Comput. 148, 110914. https://doi.org/10.1016/j.asoc.2023.110914
dc.identifier.doi10.1016/j.asoc.2023.110914
dc.identifier.officialurlhttps://doi.org/10.1016/j.asoc.2023.110914
dc.identifier.urihttps://hdl.handle.net/20.500.14352/114236
dc.journal.titleApplied Soft Computing
dc.language.isoeng
dc.publisherElsevier
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu004.89
dc.subject.cdu338.48
dc.subject.keywordTourist destionations
dc.subject.keywordTourist events
dc.subject.keywordClassification
dc.subject.keywordCRISP-DM
dc.subject.keywordArtificial Intelligence
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmTurismo
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco5312.90 Economía Sectorial: Turismo
dc.titleTourism destination events classifier based on artificial intelligence techniques
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number148
dspace.entity.typePublication
relation.isAuthorOfPublication658b3e73-df89-4013-b006-45ea9db05e25
relation.isAuthorOfPublication.latestForDiscovery658b3e73-df89-4013-b006-45ea9db05e25

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AJCR-Q1-23-2023-ASOC-oficial.pdf
Size:
4.5 MB
Format:
Adobe Portable Document Format

Collections