Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Critical and supercritical higher order parabolic problems in R-N

Loading...
Thumbnail Image

Full text at PDC

Publication date

2014

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

Due to the lack of the maximum principle the analysis of higher order parabolic problems in RN is still not as complete as the one of the second-order reaction-diffusion equations. While the critical exponents and then a dissipative mechanism in the subcritical case have already been satisfactorily described (see Cholewa and Rodriguez-Bernal (2012)), for problems in the critical or supercritical regime the questions concerning well or illposedness, as well as possible dissipative properties of the solutions, have not yet been satisfactorily answered. This article is devoted to the analysis of the higher order parabolic problems in R-N in the latter case. Focusing on the critical and supercritical regimes we give sufficient "good"-sign conditions proving that the problem is then globally well posed in L-2(R-N) and even possesses a compact global attractor. On the other hand, for supercritically growing "bad"-signed nonlinearities we show that the problem is ill-posed.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections