Minimal periods of semilinear evolution equations with Lipschitz nonlinearity
Loading...
Download
Full text at PDC
Publication date
2006
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citation
Abstract
It is known that any periodic orbit of a Lipschitz ordinary differential equation must have period at least 2π/L, where L is the Lipschitz constant of f. In this paper, we prove a similar result for the semilinear evolution equation du/dt=-Au+f(u): for each α with 0 α 1/2 there exists a constant Kα such that if L is the Lipschitz constant of f as a map from D(Aα) into H then any periodic orbit has period at least KαL-1/(1-α). As a concrete application we recover a result of Kukavica giving a lower bound on the period for the 2d Navier–Stokes equations with periodic boundary conditions.