Growth and luminescence of oriented nanoplate arrays in tin doped ZnO

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Iop Publishing Ltd
Google Scholar
Research Projects
Organizational Units
Journal Issue
Sintering of a ZnO-SnO_2 mixture under argon flow leads to the growth of microrods on the sample surface, which are formed by oriented stacks of nanoplates. Energy dispersive spectroscopy and cathodoluminescence ( CL) in the scanning electron microscope show that the stacks of nanoplates consist of Sn doped ZnO. The stacks of nanoplates have well defined orientations relative to the growth axis of the rod. The formation of the nanoplates, which is not observed when undoped ZnO is used in the same process, is attributed to the stresses generated by the presence of Sn atoms in the rods.
© 2007 IOP Publishing Ltd. This work was supported by MEC (Project MAT 2003-00455).
Unesco subjects
[1] Pan Z W, Dai Z R and Wang Z L 2001 Science 291 1947 [2] Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R and Yang P 2001 Science 292 1897 [3] Hu J Q and Bando Y 2003 Appl. Phys. Lett. 82 1401 [4] Ng H T, Chen B, Li J, Han J, Meyyapan M, Wu J, Li S X and Haller E E 2003 Appl. Phys. Lett. 82 1689 [5] Xing Y J, Xi Z H, Xue Z Q, Zhang X D, Song J H, Wang R M, Xu J, Song Y, Zhang S L and Yu D P 2003 Appl. Phys. Lett. 83 1689 [6] Lee J-S, Park K, Kang M-I, Park I-W, Kim S-W, Cho W K, Han H S and Kim S 2003 J. Cryst. Growth 254 423 [7] Liu F, Gao P J, Zhang H R, Li J Q and Gao H J 2004 Nanotechnology 15 949 [8] Zhang Y, Jia H and Yu D 2004 J. Phys. D: Appl. Phys. 37 413 [9] Grym J, Fernández P and Piqueras J 2005 Nanotechnology 16 931 [10] Tian Z R, Voigt J A, Liu J, McKencie B, McDermott M J, Rodríguez M A, Konishi H and Hu H 2003 Nat. Mater. 2 821 [11] Illy B, Shollock B A, MacManus-Driscoll J L and Ryan M P 2005 Nanotechnology 16 320 [12] Xu C X, Sun X W, Dong Z L and Yu M B 2004 Appl. Phys. Lett. 85 3878 [13] Gao P X, Lao C S, Ding Y and Wang Z L 2006 Adv. Funct. Mater. 16 53 [14] Li S Y, Lin P, Lee C Y, Tseng T Y and Huang C J 2004 J. Phys. D: Appl. Phys. 37 2274 [15] Maestre D, Cremades A and Piqueras J 2004 J. Appl. Phys. 97 044316 [16] Nogales E, Méndez B and Piqueras J 2005 Appl. Phys. Lett. 86 113112 [17] Hidalgo P, M´endez B and Piqueras J 2005 Nanotechnology 16 2521 [18] Magdas D A, Cremades A and Piqueras J 2006 Appl. Phys. Lett. 88 113107 [19] Peiteado M, Iglesias Y, Fern´andez J F, de Frutos J and Caballero A C 2007 Mater. Chem. Phys. 101 1 [20] Bougrine A, El Hichou A, Addou M, Ebothé J, Kachouane A and Troyon M 2003 Mater. Chem. Phys. 80 438 [21] Studenikin S A, Golego N and Cocivera N 1998 J. Appl. Phys. 84 2287 [22] Liu M, Kitai H H and Mascher P 1992 J. Lumin. 54 35