Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Performance of Change Detection Algorithms Using Heterogeneous Images and Extended Multi-attribute Profiles (EMAPs)

dc.contributor.authorKwan, Chiman
dc.contributor.authorAyhan, Bulent
dc.contributor.authorLarkin, Jude
dc.contributor.authorKwan, Liyun
dc.contributor.authorBernabé García, Sergio
dc.contributor.authorPlaza, Antonio
dc.date.accessioned2023-06-17T12:38:31Z
dc.date.available2023-06-17T12:38:31Z
dc.date.issued2019-10-14
dc.description.abstractWe present detection performance of ten change detection algorithms with and without the use of Extended Multi-Attribute Profiles (EMAPs). Heterogeneous image pairs (also known as multimodal image pairs), which are acquired by different imagers, are used as the pre-event and post-event images in the investigations. The objective of this work is to examine if the use of EMAP, which generates synthetic bands, can improve the detection performances of these change detection algorithms. Extensive experiments using five heterogeneous image pairs and ten change detection algorithms were carried out. It was observed that in 34 out of 50 cases, change detection performance was improved with EMAP. A consistent detection performance boost in all five datasets was observed with EMAP for Homogeneous Pixel Transformation (HPT), Chronochrome (CC), and Covariance Equalization (CE) change detection algorithms.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipDefense Advanced Research Projects Agency (DARPA)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/67637
dc.identifier.doi10.3390/rs11202377
dc.identifier.issn2072-4292
dc.identifier.officialurlhttps://doi.org/10.3390/rs11202377
dc.identifier.relatedurlhttps://www.mdpi.com/2072-4292/11/20/2377
dc.identifier.urihttps://hdl.handle.net/20.500.14352/12684
dc.issue.number20
dc.journal.titleRemote Sensing
dc.language.isoeng
dc.page.initial2377
dc.publisherMDPI
dc.relation.projectID(#140D6318C0043)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordchange detection
dc.subject.keywordheterogeneous data
dc.subject.keywordEMAP
dc.subject.keywordmulti-modal images
dc.subject.ucmInformática (Informática)
dc.subject.unesco1203.17 Informática
dc.titlePerformance of Change Detection Algorithms Using Heterogeneous Images and Extended Multi-attribute Profiles (EMAPs)
dc.typejournal article
dc.volume.number11
dspace.entity.typePublication
relation.isAuthorOfPublication092818da-fd6a-4d1f-ba39-7e6098841e99
relation.isAuthorOfPublication.latestForDiscovery092818da-fd6a-4d1f-ba39-7e6098841e99

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Performance_of_Change_Detection_Algorithms_Using_H.pdf
Size:
21 MB
Format:
Adobe Portable Document Format

Collections