Al doped ZnO nanoplate arrays and microbox structures grown by thermal deposition
dc.contributor.author | Ortega Villafuerte, Yanicet | |
dc.contributor.author | Fernández Sánchez, Paloma | |
dc.contributor.author | Piqueras De Noriega, Francisco Javier | |
dc.date.accessioned | 2023-06-20T03:40:45Z | |
dc.date.available | 2023-06-20T03:40:45Z | |
dc.date.issued | 2009-03-01 | |
dc.description | © 2009 American Institute of Physics. This work was supported by MEC (Project No. MAT2006-01259). | |
dc.description.abstract | Al doped ZnO arrays of nanoplates and of ordered nanoneedles have been grown by a thermal evaporation-deposition method. The nanoplates, which have mainly triangular shape. Interpenetrating triangles and crossing of the triangles with other planar arrangements form a structure consisting of arrays of microboxes. The influence of Al on the luminescence of the nanostructures has been studied by cathodoluminescence (CL) in the scanning electron microscope. Intense CL emission from the internal faces of the microboxes is related to the presence of deep level defects. | |
dc.description.department | Depto. de Física de Materiales | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | MEC | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/25802 | |
dc.identifier.doi | 10.1063/1.3079523 | |
dc.identifier.issn | 0021-8979 | |
dc.identifier.officialurl | http://dx.doi.org/10.1063/1.3079523 | |
dc.identifier.relatedurl | http://scitation.aip.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/44228 | |
dc.issue.number | 5 | |
dc.journal.title | Journal of Applied Physics | |
dc.language.iso | eng | |
dc.publisher | American Institute of Physics | |
dc.relation.projectID | MAT2006-01259 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 538.9 | |
dc.subject.keyword | Zinc-Oxide | |
dc.subject.keyword | Optical-Properties | |
dc.subject.keyword | Films | |
dc.subject.keyword | Nanowires | |
dc.subject.keyword | Nanorods | |
dc.subject.ucm | Física de materiales | |
dc.title | Al doped ZnO nanoplate arrays and microbox structures grown by thermal deposition | |
dc.type | journal article | |
dc.volume.number | 105 | |
dcterms.references | 1. R. Wang, L. H. King, and A. W. Sleight, J. Mater. Res. 11, 1659 (1996). 2. M. Chen, Z. L. Pei, X. Wang, C. Sun, and L. S. Wen, J. Vac. Sci. Technol. A 19, 963 (2001). 3. J. H. Lee and B. O. Park, Thin Solid Films 426, 94 (2003). 4. H. M. Zhou, D. Q. Yi, Z. M. Yu, L. R. Xiao, and J. Li, Thin Solid Films 515, 6909 (2007). 5. J. Y. Hwang, C. R. Cho, S. A. Lee, and S. Y. Jeong, J. Korean Phys. Soc. 47, S228 (2005). 6. K. Yim and C. Lee, Cryst. Res. Technol. 41, 1198 (2006). 7. D. Horwat and A. Billard, Thin Solid Films 515, 5444 (2007). 8. M. Suchea, S. Christoulakis, N. Karsarakis, T. Kitsopoulos, and G. Kirikiadis, Thin Solid Films 515, 6562 (2007). 9. M. Caglar, S. Ilican, Y. Caglar, and F. Yakuphanoglu, J. Mater. Sci.: Mater. Electron. 19, 704 (2008). 10. S. Y. Li, P. Lin, C. Y. Lee, T. Y. Tseng, and C. J. Huang, J. Phys. D 37, 2274 (2004). 11. Y. Ortega, P. Fernández, and J. Piqueras, Nanotechnology 18, 115606 (2007). 12. J. G. Wen, J. Y. Lao, D. Z. Wang, T. M. Kyaw, Y. L. Foo, and Z. F. Ren, Chem. Phys. Lett. 372, 717 (2003). 13. L. Xu, Y. Xu, Y. Chen, H. Xiao, L. Zhu, Q. Zhou, and S. Li, J. Phys. Chem. B 110, 6637 (2006). 14. C. X. Xu, X. W. Sun, and B. J. Chen, Appl. Phys. Lett. 84, 1540 (2004). 15. C. Ronning, P. X. Gao, Y. Ding, Z. L. Wang, and D. Schwen, Appl. Phys. Lett. 84, 783 (2004). 16. H. Tang, L. Zhu, H. He, Z. Ye, Y. Zhang, M. Zhi, Z. Yang, B. Zhao, and T. Li, J. Phys. D 39, 2696 (2006). 17. H. P. He, H. P. Tang, Z. Z. Ye, L. P. Zhu, B. H. Zhao, L. Wang, and X. H. Li Appl. Phys. Lett. 90, 023104 (2007). 18. R. Wang, C. Liu, J. Huang, and S. Chen, Appl. Phys. Lett. 88, 023111 (2006). 19. Y. Sun, K. E. Addison, and M. N. R. Ashfold, Nanotechnology 18, 495601 (2007). 20. J. Grym, P. Fernández, and J. Piqueras, Nanotechnology 16, 931 (2005). 21. D. A. Magdas, A. Cremades, and J. Piqueras, Appl. Phys. Lett. 88, 113107 (2006). 22. E. Nogales, B. Méndez, and J. Piqueras, Appl. Phys. Lett. 86, 113112 (2005). 23. P. Hidalgo, B. Méndez, and J. Piqueras, Nanotechnology 16, 2521 (2005). 24. C. Díaz-Guerra and J. Piqueras, J. Appl. Phys. 102, 084307 (2007). 25. Z. L. Wang, X. Y. Kong, and J. M. Zuo, Phys. Rev. Lett. 91, 185502 (2003). 26. P. X. Gao and Z. L. Wang, Appl. Phys. Lett. 84, 2883 (2004). 27. P. Feng X. Q. Fu, S. Q. Li, Y. G. Wang, and T. H. Wang, Nanotechnology 18, 165704 (2007). 28. R. Yang and Z. L. Wang, Solid State Commun. 134, 741 (2005). 29. M. K. Jayaraj, A. Antony, and M. Ramachandran, Bull. Mater. Sci. 25, 227 (2002). 30. H. W. Lee, S. P. Lau, Y. G. Wang, K. Y. Tse, H. H. Hng, and B. K. Tay, J. Cryst. Growth 268, 596 (2004). 31. C. D. Bojorge, H. R. Cánepa, U. E. Gilabert, D. Silva, E. A. Dalchiele, and R. E. Marotti, J. Mater. Sci.: Mater. Electron. 18, 1119 (2007). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 2c56123a-d96e-428d-83ce-d134110a2ef3 | |
relation.isAuthorOfPublication | daf4b879-c4a8-4121-aaff-e6ba47195545 | |
relation.isAuthorOfPublication | 68dabfe9-5aec-4207-bf8a-0851f2e37e2c | |
relation.isAuthorOfPublication.latestForDiscovery | 2c56123a-d96e-428d-83ce-d134110a2ef3 |
Download
Original bundle
1 - 1 of 1