Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

On the singular scheme of codimension one holomorphic foliations in P(3)

dc.contributor.authorGiraldo Suárez, Luis
dc.contributor.authorPan-Collantes, Antonio J.
dc.date.accessioned2023-06-20T00:16:05Z
dc.date.available2023-06-20T00:16:05Z
dc.date.issued2010
dc.description.abstractIn this work, we begin by showing that a holomorphic foliation with singularities is reduced if and only if its normal sheaf is torsion-free. In addition, when the codimension of the singular locus is at least two, it is shown that being reduced is equivalent to the reflexivity of the tangent sheaf. Our main results state on one hand, that the tangent sheaf of a codimension one foliation in P3 is locally free if and only if the singular scheme is a curve, and that it splits if and only if it is arithmetically Cohen–Macaulay. On the other hand, we discuss when a split foliation in P3 is determined by its singular scheme.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipPlan Nacional I+D
dc.description.sponsorshipMinisterio de Educación y Ciencia (España)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16332
dc.identifier.doi10.1142/S0129167X1000601X
dc.identifier.issn0129-167X
dc.identifier.officialurlhttp://www.worldscinet.com/ijm/21/2107/S0129167X1000601X.html
dc.identifier.relatedurlhttp://www.worldscinet.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42301
dc.issue.number7
dc.journal.titleInternational Journal of Mathematics
dc.language.isoeng
dc.page.final858
dc.page.initial843
dc.publisherWorld Scientific Publishing
dc.relation.projectIDMTM2004-07203-C02-02
dc.relation.projectIDMTM2007-61124
dc.relation.projectIDAP2006-03911
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.keywordHolomorphic foliations
dc.subject.keywordreflexive sheaves
dc.subject.keywordsplit vector bundles
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleOn the singular scheme of codimension one holomorphic foliations in P(3)
dc.typejournal article
dc.volume.number21
dcterms.referencesP. Baum and R. Bott, Singularities of holomorphic foliations, J. Differential Geom.7 (1972) 279–342. O. Calvo-Andrade, Irreducible components of the space of holomorphic foliations,Math. Ann. 29(1) (1994) 751–767. O. Calvo-Andrade, D. Cerveau, L. Giraldo and A. Lins-Neto, Irreducible components of the space of foliations associated to the affine Lie algebra, Ergodic Theory Dynam. Systems 24(4) (2004) 987–1014. A. Campillo and J. Olivares, Polarity with respect to a foliation and Cayley-Bacharach Theorems, J. Reine Angew. Math. 534 (2001) 95–118. D. Cerveau and A. Lins-Neto, Irreducible components of the space of holomorphic foliations of degree two in CP(n), n ≥ 3, Ann. Math. 143 (1996) 577–612. F. Cukierman and J. V. Pereira, Stability of holomorphic foliations with split tangent sheaf, Amer. J. Math. 130(2) (2008) 413–439. F. Cukierman, M. G. Soares and I. Vainsencher, Singularities of logarithmic foliations, Compos. Math. 142 (2006) 131–142. D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics, Vol. 150, Springer Verlag (1995). X. Gómez-Mont, Universal families of foliations by curves, Ast´erisque 150–151 (1987) 109–129. G.-M. Greuel, G. Pfister and H. Schönemann, Singular 3.0, a computer algebra system for polynomial computations, Center for Computer Algebra, University of Kaiserslautern (2005), http://www.singular.uni-kl.de. R. Hartshorne, Algebraic Geometry, Graduate Text in Mathematics, Vol. 52 (Springer, 1977). R. Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980) 121–176. F. Hirzebruch, Topological Methods in Algebraic Geometry, Classics in Mathematics (Springer-Verlag, Berlin, 1995).
dspace.entity.typePublication
relation.isAuthorOfPublication7ee87225-8f33-4c93-9ead-94ce7ee69773
relation.isAuthorOfPublication.latestForDiscovery7ee87225-8f33-4c93-9ead-94ce7ee69773

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01.pdf
Size:
268.62 KB
Format:
Adobe Portable Document Format

Collections