The Gaia-ESO Survey: Chromospheric emission, accretion properties, and rotation in gamma Velorum and Chamaeleon*,**

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
EDP Sciencies
Google Scholar
Research Projects
Organizational Units
Journal Issue
One of the goals of the Gaia-ESO Survey (GES), which is conducted with FLAMES at the VLT, is the census and the characterization of the low-mass members of very young clusters and associations. We conduct a comparative study of the main properties of the sources belonging to gamma Velorum (gamma Vel) and Chamaeleon I (Cha I) young associations, focusing on their rotation, chromospheric radiative losses, and accretion. Methods. We used the fundamental parameters (effective temperature, surface gravity, lithium abundance, and radial velocity) delivered by the GES consortium in the first internal data release to select the members of gamma Vel and Cha I among the UVES and GIRAFFE spectroscopic observations. A total of 140 gamma Vel members and 74 Cha I members were studied. The procedure adopted by the GES to derive stellar fundamental parameters also provided measures of the projected rotational velocity (v sin i). We calculated stellar luminosities through spectral energy distributions, while stellar masses were derived by comparison with evolutionary tracks. The spectral subtraction of low-activity and slowly rotating templates, which are rotationally broadened to match the v sin i of the targets, enabled us to measure the equivalent widths (EWs) and the fluxes in the H alpha and H beta lines. The Ha line was also used for identifying accreting objects, on the basis of its EW and the width at the 10% of the line peak (10% W), and for evaluating the mass accretion rate ((M)over dot(acc)). Results. The distribution of v sin i for the members of. Vel displays a peak at about 10 km s(-1) with a tail toward faster rotators. There is also some indication of a different v sin i distribution for the members of its two kinematical populations. Most of these stars have Ha fluxes corresponding to a saturated activity regime. We find a similar distribution, but with a narrower peak, for Cha I. Only a handful of stars in gamma Vel display signatures of accretion, while many more accretors were detected in the younger Cha I, where the highest Ha fluxes are mostly due to accretion, rather than to chromospheric activity. Accreting and active stars occupy two different regions in a T-eff-flux diagram and we propose a criterion for distinguishing them. We derive (M)over dot(acc) in the ranges 10(-11)-10(-9) M-circle dot yr(-1) and 10(-10)-10(-7) M-circle dot yr(-1) for gamma Vel and Cha I accretors, respectively. We find less scatter in the (M)over dot(acc)-M-star relation derived through the H alpha EWs, when compared to the Ha 10% W diagnostics, in agreement with other authors.
© ESO 2014. Artículo firmado por 36 autores. The authors are grateful to the referee for carefully reading the paper and for the useful remarks. This work was partly supported by the European Union FP7 program through ERC grant number 320360 and by the Leverhulme Trust through grant RPG-2012-541. We acknowledge the support from INAF and Ministero dell'Istruzione, dell' Universita e della Ricerca (MIUR) in the form of the grant "Premiale VLT 2012". The results presented here benefit from discussions held during the Gaia-ESO workshops and conferences supported by the ESF (European Science Foundation) through the GREAT Research Network Program. S.G.S. acknowledge the support from the Fundacao para a Ciencia e Tecnologia, FCT (Portugal) in the form of the fellowship SFRH/BPD/47611/2008. This research also made use of the SIMBAD database, operated at the CDS (Strasbourg, France) and of the Deep Near Infrared Survey of the Southern Sky (DENIS) database.
UCM subjects
Unesco subjects
Alcalá, J. M., Natta, A., Manara, C., et al. 2014, A&A, 561, A2 Antoniucci, S., García López, R., Nisini, B., et al. 2011, A&A, 534, 32 Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. H. 1998, A&A, 337, 403 Bayo, A., Barrado, D., Huélamo, N., et al. 2012, A&A, 547, A80 Barrado y Navascués, D., Martín, E. L. 2003, AJ, 126. 2997 Biazzo, K., Alcalá, J. M., Covino, E., et al. 2012, A&A, 547, A104 Biazzo, K., Alcalá, J. M., Frasca, A., et al. 2014, A&A, 572, A84 Bochanski, J. J., West, A. A., Hawley, S. L., & Covey, K. R. 2007, AJ, 133, 531 Bouvier, J., Forestini, M., & Allain, S. 1997, A&A, 326, 1023 Bragaglia, A., Alfaro, E., Flaccomio, E., et al. 2014, A&A, in preparation Calvet, N., Briceno, C., Hernández, J., et al. 2005, AJ, 129, 935 Chester, M. M. 1991, Ph. D. Thesis, Pennsylvania State Univ. Chester, M. M., Hall, J. C., & Buzasi, D. 1994, in Eigth Cambridge Workshop on Cool Stars Slettar Systems and the Sun, ed. J.-P. Caillault, ASP Conf. Ser., 64, 1994 Costigan, G., Scholz, A., Stelzer, B., et al. 2012, MNRAS, 427, 1344 Costigan, G., Vink, J. K., Scholz, A., Ray, T., & Testi, L. 2014, MNRAS, 440, 3444 Daemgen, S., Petr-Gotzens, M. G., Correia, S., et al. 2013, A&A, 554A, 43 Espaillat, C., Furlan, E., D’Alessio, P., et al. 2011, A&A, 728, 49 Fang, M., van Boekel, R., Wang, W., et al. 2009, A&A, 504, 461 Fedele, D., van den Ancker, M. E., Henning, Th., Jayawardhana, R., & Oliveira, J. M. 2010, A&A, 510, A72 Frasca, A., & Catalano, S. 1994, A&A, 284, 883 Frasca, A., Alcalá, J. M., Covino, E., et al. 2003, A&A, 405, 149 Frasca, A., Guillout, P., Marilli, E., et al. 2006, A&A, 454, 301 Frasca, A., Covino, E., Spezzi, L., et al. 2009, A&A, 508, 1313 Frasca, A., Biazzo, K., Kővári, Zs., Marilli, E., & Çakırlı, Ö. 2010, A&A, 518, 48 Frasca, A., Fröhlich, H.-E., Bonanno, A., et al. 2011, A&A, 532, 81 Gilmore, G., Randich, S., Asplund, M., et al. 2012, The Messenger, 147, 25 Jeffries, R. D., Naylor T., Walter F. M., Pozzo M. P., & Devey C. R. 2009, MNRAS, 393, 538 Jeffries, R. D., Jackson R. J., Cottaar M., et al. 2014, A&A, 563, A94 Hall, J. C., & Ramsey, L. W. 1992, AJ, 104, 1942 Herbst, W., Bailer-Jones, C. A. L., Mundt, R., Meisenheimer, K., & Wackermann, R. 2002, A&A, 396, 513 Haisch, K. E., Lada, E. A., & Lada, C. J. 2001, ApJ, 553, 153 Hartmann, L. 1998, in Accretion Processes in Star Formation, Cambridge Univ. Press Hartmann, L., Calvet, N., Gullbring, E., & D’Alessio, P. 1998, ApJ, 495, 385 Hauschildt, P. H., Allard, F., & Baron, E. 1999, ApJ, 512, 377 Herczeg, G. J., & Hillenbrand, L. A. 2008, ApJ, 681, 594 Hernández J., Hartmann L., Calvet N., et al. 2008, ApJ, 686, 1195 Kim, K. H., Watson, D. M., Manoj, P., et al. 2009, ApJ, 700, 1017 Kraus, A. L., Shkolnik, E. L., Allers, K. L., &, Liu, M. C. 2014, AJ, 147, 146 Ingleby, L., Calvet, N., Herczeg, G., et al. 2013, ApJ, 767, 112 Lada, C. J., Muench, A. A., Luhman, K. L., et al. 2006, AJ, 131, 1574 Landman, D. A & Mongillo, M. 1979, ApJ, 230, 581 Lanzafame, A. C., Frasca, A., Damiani, F., et al. 2014, A&A, submitted Luhman, K. L. 2007, ApJ, 173, 104 Luhman, K. L. 2008, in Handbook of Star Forming Regions Vol. II, ed. B. Reipurth, ASP Mon. Publ., 169 Luhman, K. L., Allen, L. E., Allen, P. R., et al. 2008, ApJ, 675, 1375 Mamajek, E. E., & Hillenbrand L. A. 2008, ApJ, 687, 1264 Manara, C., Testi, L., Rigliaco, E., et al. 2013, A&A, 551, A107 Manoj, P., Kim, K. H., Furlan, E., et al. 2001, ApJS, 193, 11 Martínez Arnáiz, R., et al. 2011, MNRAS, 414, 2629 Meibom, S., Mathieu, R. D., & Stassun, K. G. 2009, ApJ, 695, 679 Messina, S., Desidera, S., Turatto, M., Lanzafame, A. C., & Guinan, E. F. 2010, A&A, 520, 15 Messina, S., Pizzolato, N., Guinan, E. F., & Rodonò, M. 2003, A&A, 410, 671 Montes, D., et al. 1995, A&AS, 114, 287 Moultaka, J., Ilovaisky, S. A., Prugniel, P., & Soubiran, C. 2004, PASP, 116, 693 Muzerolle, J., Luhman, K. L., Briceño, C., Hartmann, L., & Calvet, N. 2005, ApJ, 625, 906 Natta, A., Testi, L., Muzerolle, J., et al. 2004, A&A, 424, 603 Nguyen, D. C., Brandeker, A., van Kerkwijk, M. H., & Jayawardhana R. 2012, ApJ, 745, 119 Pace, G. 2013, A&A, 551, L8 Pace, G., & Pasquini, L. 2004, A&A, 426, 1021 Pecaut, M. J., & Mamajek, E. E. 2013, ApJS, 208, 9 Pizzolato, N., Maggio, A., Micela, G., Sciortino, S., & Ventura, P. 2003, A&A, 397, 147 Pozzo, M., Jeffries, R. D., Naylor, T., et al. 2000, MNRAS, 313L, 23 Preibisch, T., & Feigelson, E. D. 2005, ApJS, 160, 390 Press, W. H., Teukolsky, S. A., Wetterling, W. T., & Flannery, B. P. 1992, Numerical Recipes, The Art of Scientific Computing (Cambridge University Press), second edition Randich, S., Gilmore, G., & Gaia-ESO Consortium 2013, The Messenger, 154, 47 Rebull, L. M., Wolff, S. C., Strom, S. E., & Makidon, R. B. 2002, AJ, 124, 546 Ribas, A., Merín, B., Bouy, H., Maud, L. T. 2014, a, 561, 54 Robberto, M., Spina, L., Da Rio, N., et al. 2012, AJ, 144, 83 Sacco, G. G., Morbidelli, L., Franciosini, E., et al. 2014, A&A, 565, A113 Sicilia Aguilar, A., Hartmann, L., Calvet, N., et al. 2006, ApJ, 638, 897 Skumanich A. 1972, ApJ, 171, 265 Soderblom, D. R., Duncan, D. K., & Johnson, D. R. H. 1991, ApJ, 375, 722 Spada, F., Lanzafame, A. C., Lanza, A. F., Messina, S., & Collier Cameron, A. 2011, MNRAS, 416, 447 Spina, L., Randich, S., Palla, F., et al. 2014a, A&A, 567, A55 Spina, L., Randich, S., Palla, F., et al. 2014b, A&A, 568, A2 Stauffer, J. R., Hartmann, L. W., Prosser, C. F., et al. 1997, ApJ, 479, 776 Stelzer, B., Frasca, A., Alcalà, J. M., et al. 2013, A&A, 558, A141 Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163 Tandberg-Hanssen, E. 1967, Solar activity, Waltham, Mass.: Blaisdell Wahhaj, Z., Cieza, L., Koerner, D. W., et al. 2010, ApJ, 724, 835 White, R. J., Basri, G. 2003, ApJ, 582, 1109 Whittet, D. C. B., Prusti, T., Franco, G. A. P., et al. 1997, A&A, 327, 1194 Zacharias, N., Monet, D. G., Levine, S. E., et al. 2004, American Astron. Soc. Meeting, 205, #4815; Bulletin of the American Astronomical Society, Vol. 36, p.1418 de Zeeuw, P. T., Hoogerwerf, R., de Bruijne, J. H. J., Brown, A. G. A., & Blaauw, A. 1999, ApJ, 117, 399