Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Multiple criteria decision support system for customer segmentation using a sorting outranking method

dc.contributor.authorBarrera, Felipe
dc.contributor.authorSegura Maroto, Marina
dc.contributor.authorMaroto, Concepción
dc.date.accessioned2023-12-13T13:15:57Z
dc.date.available2023-12-13T13:15:57Z
dc.date.issued2023
dc.description.abstractFor companies, customer segmentation plays a key role in improving supply chain management by implementing appropriate marketing strategies. The objectives of this research are to design and validate a multicriteria model to support decision making for customer segmentation in a business to business context. First, the model based on the transactional customer behaviour is extended by a hierarchy with three main criteria: Recency, Frequency and Monetary (RFM), customer collaboration and growth rates. Customer collaboration includes quota compliance, variety of products and customer commitment to sustainability (reverse logistics and shared information). Second, the Global Local Net Flow Sorting (GLNF sorting) algorithm is implemented and validated using real company data to classify 8,157 customers of a multinational healthcare company. Third, the SILS quality indicator has been implemented and validated to assess the quality of preference-ordered customer groups and its parameters have been adapted for contexts with thousands of alternatives. The results are also compared with an alternative model based on data mining (K-means). The multicriteria system proposed allows to segment thousands of customers in ordered categories by preferences according to company strategies. The segments generated are more homogeneous, robust and understandable by managers than those from alternative methods. These advantages represent a relevant contribution to automating supply chain management while providing detailed analysis tools for decision making.eng
dc.description.departmentDepto. de Economía Financiera y Actuarial y Estadística
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationBarrera, Felipe, Marina Segura, y Concepción Maroto. «Multiple Criteria Decision Support System for Customer Segmentation Using a Sorting Outranking Method». Expert Systems with Applications 238 (marzo de 2024): 122310. https://doi.org/10.1016/j.eswa.2023.122310.
dc.identifier.doi10.1016/j.eswa.2023.122310
dc.identifier.issn0957-4174
dc.identifier.officialurlhttps://doi.org/10.1016/j.eswa.2023.122310
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S0957417423028129?via%3Dihub
dc.identifier.urihttps://hdl.handle.net/20.500.14352/91212
dc.issue.numberPart F
dc.journal.titleExpert Systems With Applications
dc.language.isoeng
dc.publisherElsevier
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordMultiple criteria analysis
dc.subject.keywordSupply chain management
dc.subject.keywordCustomer relationship management RFM
dc.subject.keywordGLNF sorting
dc.subject.keywordPROMETHEE
dc.subject.keywordRFM
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.ucmInvestigación operativa (Estadística)
dc.subject.ucmAdministración de empresas
dc.subject.unesco5311.07 Investigación Operativa
dc.subject.unesco1207 Investigación Operativa
dc.titleMultiple criteria decision support system for customer segmentation using a sorting outranking method
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number238
dspace.entity.typePublication
relation.isAuthorOfPublication447cb780-3038-40b7-97a3-06c0fd5f36d7
relation.isAuthorOfPublication.latestForDiscovery447cb780-3038-40b7-97a3-06c0fd5f36d7

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Multiple_criteria_decision_support_system.pdf
Size:
6.78 MB
Format:
Adobe Portable Document Format

Collections