Irreducible components of the space of foliations associated to the affine Lie algebra

dc.contributor.authorCalvo-Andrade, O.
dc.contributor.authorCerveau, D.
dc.contributor.authorGiraldo Suárez, Luis
dc.contributor.authorLins Neto, A.
dc.date.accessioned2023-06-20T10:35:38Z
dc.date.available2023-06-20T10:35:38Z
dc.date.issued2004-08
dc.description.abstractIn this paper, we give the explicit construction of certain components of the space of holomorphic foliations of codimension one, in complex projective spaces. These components are associated to some algebraic representations of the affine Lie algebra $\mathfrak{aff}(\mathbb{C})$. Some of them, the so-called exceptional or Klein–Lie components, are rigid in the sense that all generic foliations in the component are equivalent (Example 1). In particular, we obtain rigid foliations of all degrees. Some generalizations and open problems are given at the end of §1.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21752
dc.identifier.doi10.1017/S0143385703000580
dc.identifier.issn1469-4417
dc.identifier.officialurlhttp://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=241021
dc.identifier.relatedurlhttp://journals.cambridge.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50697
dc.issue.number4
dc.journal.titleErgodic Theory and Dynamical Systems
dc.page.final1014
dc.page.initial987
dc.publisherCambridge
dc.rights.accessRightsmetadata only access
dc.subject.cdu512.76/.77
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleIrreducible components of the space of foliations associated to the affine Lie algebra
dc.typejournal article
dc.volume.number24
dcterms.referencesM. Brunella. Birational Geometry of Foliations. IMPA, Brazil, 2000. O. Calvo-Andrade. Irreducible components of the space of holomorphic foliations. Math. Ann. 299 (1994), 751–767. C. Camacho and A. Lins Neto. The topology of integrable differential forms near a singularity. Publ. Math. IHES 55 (1982), 5–35. D. Cerveau and A. Lins Neto. Formes tangentes à des actions commutatives. Ann. Fac. Sci. Toulouse 6 (1984), 51–85. D. Cerveau and A. Lins Neto. Irreducible components of the space of holomorphic foliations of degree two in CP(n) , n≥3 . Ann. Math. 143 (1996), 577–612. D. Cerveau, A. Lins Neto and S. J. Edixhoven. Pull-back components of the space of holomorphic foliations on CP (n) , n≥3 . J. Alg. Geom. 10 (2001), 695–711. G. de Rham. Sur la division des formes et des courants par une forme linéaire. Comm. Math. Helv. 28 (1954), 346–352. D. Eisenbud and J. Harris. Divisors on general curves and cuspidal rational curves. Invent. Math. 74 (1983), 371–418. F. Enriques and O. Chisini. Teoria Geometrica delle Equazioni e delle Funzioni Algebriche. Zanichelli, Bologna, 1985. I. Kupka. The singularities of integrable structurally stable Pfaffian forms. Proc. Natl Acad. Sci. USA 52 (1964), 1431–1432. A. Lins Neto. Holomorphic rank of hypersurfaces with an isolated singularity. Bol. Soc. Bras. Mat. 29(1) (1998), 145–161. A. Lins Neto. Finite determinacy of germs of integrable 1-forms in dimension 3 (a special case). Geometric Dynamics (Lecture Notes in Mathematics, 1007). 1981, pp. 480–497. A. Lins Neto and B. A. Scárdua. Folheaç~oes Algébricas Complexas. 21º Colóquio Brasileiro de Matemática, IMPA, Brazil, 1997. B. Malgrange. Frobenius avec singularités I. Codimension un. Publ. Math. IHES 46 (1976), 163–173. A. Medeiros. Structural stability of integrable differential forms. Eds. M. do Carmo and J. Palis. Geometry and Topology (Lecture Notes in Mathematics, 597). 1977, pp. 395–428. C. Okonek, M. Schneider and H. Spindler. Vector Bundles on Complex Projective Spaces (Progress in Mathematics, 3). Birkhäuser, Basel, 1980. C. S. Sheshadri. Theory of Moduli. Proceedings of Symposia in Pure Mathematics, 29. Algebraic Geometry, (Arcata, 1974). American Mathematical Society, Providence, RI, 1975, pp. 263–304.
dspace.entity.typePublication
relation.isAuthorOfPublication7ee87225-8f33-4c93-9ead-94ce7ee69773
relation.isAuthorOfPublication.latestForDiscovery7ee87225-8f33-4c93-9ead-94ce7ee69773

Download

Collections