Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The active centaur 2020 MK4

dc.contributor.authorFuente Marcos, Carlos de la
dc.contributor.authorFuente Marcos, Raúl de la
dc.contributor.authorLicandro Goldaracena, Javier
dc.contributor.authorSerra-Ricart, M.
dc.contributor.authorMartino, Salvatore
dc.contributor.authorLeon, Julia de
dc.contributor.authorChaudry, F.
dc.contributor.authorAlarcón, M. R.
dc.date.accessioned2023-06-17T09:20:17Z
dc.date.available2023-06-17T09:20:17Z
dc.date.issued2021
dc.descriptionde la Fuente Marcos, C., de la Fuente Marcos, R., Licandro, J., Serra-Ricart, M., Martino, S., de León, J., et al. (2021). The active centaur 2020 MK4★. A&a, 649 Retrieved from https://doi.org/10.1051/0004-6361/202039117 © ESO 2021
dc.description.abstractContext. Centaurs go around the Sun between the orbits of Jupiter and Neptune. Only a fraction of the known centaurs have been found to display comet-like features. Comet 29P/Schwassmann-Wachmann 1 is the most remarkable active centaur. It orbits the Sun just beyond Jupiter in a nearly circular path. Only a handful of known objects follow similar trajectories. Aims. We present photometric observations of 2020 MK4, a recently found centaur with an orbit not too different from that of 29P, and we perform a preliminary exploration of its dynamical evolution. Methods. We analyzed broadband Cousins R and Sloan g′, r′, and i′ images of 2020 MK4 acquired with the Jacobus Kapteyn Telescope and the IAC80 telescope to search for cometary-like activity and to derive its surface colors and size. Its orbital evolution was studied using direct N-body simulations. Results. Centaur 2020 MK4 is neutral-gray in color and has a faint, compact cometary-like coma. The values of its color indexes, (g′− r′) = 0.42 ± 0.04 and (r′− i′) = 0.17 ± 0.04, are similar to the solar ones. A lower limit for the absolute magnitude of the nucleus is Hg = 11.30 ± 0.03 mag which, for an albedo in the range of 0.1–0.04, gives an upper limit for its size in the interval (23, 37) km. Its orbital evolution is very chaotic and 2020 MK4 may be ejected from the Solar System during the next 200 kyr. Comet 29P experienced relatively close flybys with 2020 MK4 in the past, sometimes when they were temporary Jovian satellites. Conclusions. Based on the analysis of visible CCD images of 2020 MK4, we confirm the presence of a coma of material around a central nucleus. Its surface colors place this centaur among the most extreme members of the gray group. Although the past, present, and future dynamical evolution of 2020 MK4 resembles that of 29P, more data are required to confirm or reject a possible connection between the two objects and perhaps others.
dc.description.departmentUnidad Deptal. de Astronomía y Geodesia
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/69503
dc.identifier.doi10.1051/0004-6361/202039117
dc.identifier.issn0004-6361
dc.identifier.officialurlhttps://doi.org/10.1051/0004-6361%2F202039117
dc.identifier.relatedurlhttps://www.aanda.org/articles/aa/abs/2021/05/aa39117-20/aa39117-20.html
dc.identifier.urihttps://hdl.handle.net/20.500.14352/8621
dc.journal.titleAstronomy & Astrophysics
dc.language.isoeng
dc.page.initialA85
dc.publisherEDP Sciences
dc.relation.projectIDESP2017-87813-R; SEV-2015-0548
dc.rights.accessRightsopen access
dc.subject.cdu52
dc.subject.keywordComets: general
dc.subject.keywordComets: individual: 29P
dc.subject.keywordMinor planets
dc.subject.keywordasteroids: individual: 2020 MK4
dc.subject.keywordTechniques: photometric
dc.subject.keywordMethods: numerical
dc.subject.keywordasteroids: general
dc.subject.ucmAstronomía (Matemáticas)
dc.subject.unesco21 Astronomía y Astrofísica
dc.titleThe active centaur 2020 MK4
dc.typejournal article
dc.volume.number649
dcterms.referencesAarseth, S. J. 2003, Gravitational N-Body Simulations Agarwal, J., Jewitt, D., Mutchler, M., Weaver, H., & Larson, S. 2017, Nature, 549, 357 Agarwal, J., Kim, Y., Jewitt, D., et al. 2020, A&A, 643, A152 Bailey, B. L. & Malhotra, R. 2009, Icarus, 203, 155 Benner, L. A. M. 1994, PhD thesis, Washington University. Benner, L. A. M. & McKinnon, W. B. 1995, Icarus, 118, 155 Bilir, S., Karaali, S., & Tunçel, S. 2005, Astronomische Nachrichten, 326, 321 Brasser, R. & Wang, J. H. 2015, A&A, 573, A102 Cabral, N., Guilbert-Lepoutre, A., Fraser, W. C., et al. 2019, A&A, 621, A102 Carusi, A. & Valsecchi, G. B. 1981, A&A, 94, 226 Chandler, C. O., Kueny, J. K., Trujillo, C. A., Trilling, D. E., & Oldroyd, W. J. 2020, ApJ, 892, L38 Chebotarev, G. A. 1965, Soviet Ast., 8, 787 de la Fuente Marcos, C. & de la Fuente Marcos, R. 2012, MNRAS, 427, 728 de la Fuente Marcos, C. & de la Fuente Marcos, R. 2015, MNRAS, 453, 1288 de la Fuente Marcos, C., de la Fuente Marcos, R., & Aarseth, S. J. 2015, MNRAS, 446, 1867 Di Sisto, R. P. & Brunini, A. 2007, Icarus, 190, 224 Di Sisto, R. P., Fernández, J. A., & Brunini, A. 2009, Icarus, 203, 140 Di Sisto, R. P. & Rossignoli, N. L. 2020, Celestial Mechanics and Dynamical Astronomy, 132, 36 Drummond, J., Bulger, J., Chambers, K., et al. 2020, Minor Planet Electronic Circulars, 2020-N36 Emel’yanenko, V. V., Emel’yanenko, N. Y., Naroenkov, S. A., & Andreev, M. V. 2013, Solar System Research, 47, 189 Fedorets, G., Granvik, M., & Jedicke, R. 2017, Icarus, 285, 83 Fernandez, J. A. 1980, MNRAS, 192, 481 Freedman, D. & Diaconis, P. 1981, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 57, 453 Ginsburg, A., Sipôcz, B. M., Brasseur, C. E., et al. 2019, AJ, 157, 98 Giorgini, J. 2011, in Journées Systèmes de Référence Spatio-temporels 2010, ed. N. Capitaine, 87–87 Giorgini, J. D. 2015, in IAU General Assembly, Vol. 29, 2256293 Grauer, A. D., Sostero, G., Melville, I., et al. 2011a, Central Bureau Electronic Telegrams, 2867, 1 Grauer, A. D., Sostero, G., Melville, I., et al. 2011b, IAU Circ., 9235, 1 Grazier, K. R., Castillo-Rogez, J. C., & Horner, J. 2018, AJ, 156, 232 Grazier, K. R., Horner, J., & Castillo-Rogez, J. C. 2019, MNRAS, 490, 4388 Guilbert-Lepoutre, A. 2012, AJ, 144, 97 Hainaut, O. R., Delsanti, A., Meech, K. J., &West, R. M. 2004, A&A, 417, 1159 Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Nature, 585, 357–362 Hartmann, W. K., Tholen, D. J., Meech, K. J., & Cruikshank, D. P. 1990, Icarus, 83, 1 Hernandez, S., Hankey, M., & Scott, J. 2019, in American Astronomical Society Meeting Abstracts, Vol. 233, American Astronomical Society Meeting Abstracts #233, 245.03 Hunter, J. D. 2007, Computing in Science and Engineering, 9, 90 Jewitt, D. 2009, AJ, 137, 4296 Jewitt, D., Hui, M.-T., Mutchler, M., et al. 2017, ApJ, 847, L19 Jewitt, D. & Luu, J. 2019, ApJ, 886, L29 Kaiser, N. & Pan-STARRS Project Team. 2004, in American Astronomical Society Meeting Abstracts, Vol. 204, American Astronomical Society Meeting Abstracts #204, 97.01 Kareta, T., Sharkey, B., Noonan, J., et al. 2019, AJ, 158, 255 Keel, W. C., Oswalt, T., Mack, P., et al. 2017, PASP, 129, 015002 Kim, Y., Agarwal, J., & Jewitt, D. 2020, in AAS/Division for Planetary Sciences Meeting Abstracts, Vol. 52, AAS/Division for Planetary Sciences Meeting Abstracts, 217.01 Królikowska, M. & Dybczynski, P. A. 2017, MNRAS, 472, 4634 Kulyk, I., Korsun, P., Rousselot, P., Afanasiev, V., & Ivanova, O. 2016, Icarus, 271, 314 Lacerda, P. 2013, MNRAS, 428, 1818 Landolt, A. U. 1992, AJ, 104, 340 Laskar, J., Fienga, A., Gastineau, M., & Manche, H. 2011, A&A, 532, A89 Levison, H. F. & Duncan, M. J. 1997, Icarus, 127, 13 Licandro, J., de la Fuente Marcos, C., de la Fuente Marcos, R., et al. 2019, A&A, 625, A133 Makino, J. 1991, ApJ, 369, 200 Mazzotta Epifani, E., Dotto, E., Ieva, S., et al. 2018, A&A, 620, A93 Melita, M. D. & Licandro, J. 2012, A&A, 539, A144 Murray, C. D. & Dermott, S. F. 1999, Solar system dynamics Nakano, S., Kobayashi, T., Meyer, E., et al. 1993, IAU Circ., 5800, 1 Neslušan, L., Tomko, D., & Ivanova, O. 2017, Contributions of the Astronomical Observatory Skalnate Pleso, 47, 7 Peixinho, N., Doressoundiram, A., Delsanti, A., et al. 2003, A&A, 410, L29 Piani, F., Ceschia, M., Pettarin, E., et al. 2011, Minor Planet Electronic Circulars, 2011-U41 Roberts, A. C. & Muñoz-Gutiérrez, M. A. 2021, Icarus, 358, 114201 Rodgers, C. T., Canterna, R., Smith, J. A., Pierce, M. J., & Tucker, D. L. 2006, AJ, 132, 989 Rousselot, P. 2008, A&A, 480, 543 Rudenko, M. 2016, in Asteroids: New Observations, New Models, ed. S. R. Chesley, A. Morbidelli, R. Jedicke, & D. Farnocchia, Vol. 318, 265–269 Saillenfest, M., Fouchard, M., Tommei, G., & Valsecchi, G. B. 2017, Celestial Mechanics and Dynamical Astronomy, 129, 329 Sarid, G., Volk, K., Steckloff, J. K., et al. 2019, ApJ, 883, L25 Scotti, J. V., Bressi, T. H., Spahr, T. B., et al. 2009, Minor Planet Electronic Circulars, 2009-F28 Sheppard, S. S. & Jewitt, D. C. 2003, Nature, 423, 261 Spahr, T., Williams, G. V., & Grauer, A. D. 2011, Central Bureau Electronic Telegrams, 2867, 2 Szabó, G. M., Sárneczky, K., & Kiss, L. L. 2011, A&A, 531, A11 Tegler, S. C., Bauer, J. M., Romanishin, W., & Peixinho, N. 2008, Colors of Centaurs, ed. M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, A. Morbidelli, & R. Dotson, 105 Tegler, S. C., Romanishin, W., & Consolmagno, G. J. 2003, ApJ, 599, L49 Tegler, S. C., Romanishin, W., Consolmagno, G. J., & J., S. 2016, AJ, 152, 210 Trigo-Rodríguez, J. M., García-Melendo, E., Davidsson, B. J. R., et al. 2008, A&A, 485, 599 van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, Computing in Science and Engineering, 13, 22 Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nature Methods, 17, 261 Wierzchos, K. & Womack, M. 2020, AJ, 159, 136 Wong, I., Mishra, A., & Brown, M. E. 2019, AJ, 157, 225
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
delafuente_theactive.pdf
Size:
6.69 MB
Format:
Adobe Portable Document Format

Collections