Basic principles drive self-organization of brain-like connectivity structure

dc.contributor.authorCalvo Tapia, Carlos
dc.contributor.authorMakarov Slizneva, Valeriy
dc.contributor.authorvan Leeuwen, Cees
dc.date.accessioned2024-02-01T19:03:36Z
dc.date.available2024-02-01T19:03:36Z
dc.date.issued2020-03
dc.description.abstractThe brain can be considered as a system that dynamically optimizes the structure of anatomical connections based on the efficiency requirements of functional connectivity. To illustrate the power of this principle in organizing the complexity of brain architecture, we portray the functional connectivity as diffusion on the current network structure. The diffusion drives adaptive rewiring, resulting in changes to the network to enhance its efficiency. This dynamic evolution of the network structure generates, and thus explains, modular small-worlds with rich club effects, features commonly observed in neural anatomy. Taking wiring length and propagating waves into account leads to the morphogenesis of more specific neural structures that are stalwarts of the detailed brain functional anatomy, such as parallelism, divergence, convergence, super-rings, and super-chains. By showing how such structures emerge, largely independently of their specific biological realization, we offer a new conjecture on how natural and artificial brain-like structures can be physically implemented.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationCalvo Tapia C, Makarov VA, van Leeuwen C. Basic principles drive self-organization of brain-like connectivity structure. Communications in Nonlinear Science and Numerical Simulation 82 105065, 2020
dc.identifier.doi10.1016/j.cnsns.2019.105065
dc.identifier.officialurlhttps://www.sciencedirect.com/science/article/pii/S1007570419303843?via%3Dihub
dc.identifier.urihttps://hdl.handle.net/20.500.14352/97988
dc.journal.titleCommunications in Nonlinear Science and Numerical Simulation
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/FIS2017-82900-P/ES/LA COMPACTACION DEL TIEMPO EN EL PROCESAMIENTO DE SITUACIONES DINAMICAS COMO FENOMENO BIOFISICO UNIFICADOR DE LA COGNICION PRIMORDIAL EN HUMANOS Y ROBOTS/
dc.rights.accessRightsopen access
dc.subject.ucmCiencias
dc.subject.unesco2404 Biomatemáticas
dc.titleBasic principles drive self-organization of brain-like connectivity structure
dc.typejournal article
dc.volume.number82
dspace.entity.typePublication
relation.isAuthorOfPublication7de9bed2-b9e9-42b3-a058-9fd2ef09f4b4
relation.isAuthorOfPublicationa5728eb3-1e14-4d59-9d6f-d7aa78f88594
relation.isAuthorOfPublication.latestForDiscovery7de9bed2-b9e9-42b3-a058-9fd2ef09f4b4
Download
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S1007570419303843-main.pdf
Size:
2.06 MB
Format:
Adobe Portable Document Format
Collections