Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Faradaic deionization technology: Insights from bibliometric, data mining and machine learning approaches

dc.contributor.authorAytaç, Ersin
dc.contributor.authorFombona-Pascual, Alba
dc.contributor.authorLado, Julio J.
dc.contributor.authorGarcía Quismondo , Enrique
dc.contributor.authorPalma, Jesús
dc.contributor.authorKhayet Souhaimi, Mohamed
dc.date.accessioned2024-04-10T15:04:25Z
dc.date.available2024-04-10T15:04:25Z
dc.date.issued2023-10-01
dc.description2023 Acuerdos transformativos CRUE
dc.description.abstractFaradaic deionization (FDI) is an emerging water treatment technology based on electrodes able to remove ionic species from water by charge transfer reactions. It is a young and promising technology that has attracted much attention due to its large capacity to store ions and the high selectivity of the faradaic electrode materials. This study reviews published papers on FDI from different angles: data mining, bibliometric and machine learning. Metrics such as annual growth rate, most important journals, relevant authors, collaborations maps, sentiment and subjectivity analysis, similarity and clustering analysis were performed. The results indicated that the strong interest in FDI really started in 2016, China is the most active country in FDI, and Desalination is the most important journal publishing FDI articles. The word cloud method showed that the most preferred adopted words are deionization, capacitive, electrode, material. Sentiment analysis results indicated that most of the researchers are optimistic about FDI technology. The title similarity method revealed that FDI researchers were successful in proposing unique and appropriate titles. The clustering approach stressed that FDI literature is concentrated on electrode material production, desalination application, lithium recovery and comparison with CDI.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK)
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.identifier.doi10.1016/j.desal.2023.116715
dc.identifier.essn1873-4464
dc.identifier.issn0011-9164
dc.identifier.officialurlhttps://www.sciencedirect.com/science/article/pii/S0011916423003478
dc.identifier.urihttps://hdl.handle.net/20.500.14352/102965
dc.journal.titleDesalination
dc.language.isoeng
dc.page.final116715-24
dc.page.initial116715-1
dc.publisherElsevier
dc.relation.projectID1059B191900618
dc.relation.projectID2020-T1/AMB-19799
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu536
dc.subject.keywordBiblioshiny
dc.subject.keywordBIRCH clustering algorithm
dc.subject.keywordFaradaic deionization
dc.subject.keywordISOMAP dimensionality reduction
dc.subject.keywordSBERT
dc.subject.keywordText mining
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleFaradaic deionization technology: Insights from bibliometric, data mining and machine learning approaches
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number563
dspace.entity.typePublication
relation.isAuthorOfPublication8e32e718-0959-4e6c-9e04-891d3d43d640
relation.isAuthorOfPublication.latestForDiscovery8e32e718-0959-4e6c-9e04-891d3d43d640

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Faradaic deionization.pdf
Size:
13.71 MB
Format:
Adobe Portable Document Format

Collections