Aplicación de métodos numéricos en inferencia bayesiana : implementación de un método bayesiano robusto
Loading...
Download
Official URL
Full text at PDC
Publication date
2004
Defense date
2003
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Complutense de Madrid, Servicio de Publicaciones
Citation
Abstract
El objetivo de este trabajo es desarrollar técnicas para la aplicación de la familia de distribuciones Potencial Exponencial, dentro del marco de la Inferencia Bayesiana, con especial incidencia en el problema de selección de modelos bayesianos. En particular, se presenta una generalización de esta familia, y se desarrollan un método Monte-Carlo, un método de simulación vía muestreo de Gibbs y un método de simulación que utiliza una representación en mixturas de esta familia, para establecer inferencias sobre las distribuciones a posteriori surgidas del planteamiento bayesiano. A través del parámetro de control de curtosis puede plantearse un contraste bayesiano de hipótesis nula puntual para contrastar normalidad de los datos en el marco de esta familia. Se plantea este contraste desde un enfoque basado en medidas de discrepancia, presentando una medida basada en el cálculo de regiones de máxima densidad a posteriori y haciendo un estudio de simulación. Finalmente se aplican las técnicas desarrolladas anteriormente en el marco de modelos bayesianos, concretamente en modelos lineales, modelos no lineales, y modelos longitudinales, poniendo de relieve el interés de la utilización de esta familia en problemas de robustez en modelos bayesianos
Description
Tesis de la Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, Departamento de Estadística e Investigación Operativa, leída el 10-07-2003