Strictly singular and strictly cosingular operators on C(K,E).
| dc.contributor.author | Bombal Gordón, Fernando | |
| dc.contributor.author | Porras Pomares, Beatriz | |
| dc.date.accessioned | 2023-06-20T16:50:47Z | |
| dc.date.available | 2023-06-20T16:50:47Z | |
| dc.date.issued | 1989 | |
| dc.description.abstract | Let E, F be Banach spaces and K a compact Hausdorff space, L(E, F) the class of bounded linear operators from E into F and C(K,E) the Banach space of continuous E-valued functions defined on K normed by the supremum norm. Every bounded linear operator T:C(K,E) ! F has a representing measure m, i.e., a finitely additive measure defined on the _- field B0(K) of Borel subsets of K with values in L(E, F__) such that Tf = R f dm for each f 2 C(K,E). In an earlier related work certain classes of operators in C(K,E), in particular the weakly compact operators, were studied in terms of their representing measures [Bombal and P. Cembranos, Math. Proc. Cambridge Philos. Soc. 97 (1985), no. 1, 137–146; MR0764502 (86b:47051)]. In this paper the strictly singular and strictly cosingular operators are investigated. It is shown that T is strictly singular if and only if its extension T to B(B0(K),E) is strictly singular, and that, provided the semivariation of m is continuous at ? (e.g. if T is weakly compact), T is strictly cosingular if and only if T is strictly cosingular. The compact dispersed spaces are seen to be those for which “natural” conditions on m are sufficient to ensure that T is strictly singular or strictly cosingular.For such K it is shown that C(K,E) contains a complemented copy of lp (1 _ p < 1) if and only if E does | |
| dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
| dc.description.faculty | Fac. de Ciencias Matemáticas | |
| dc.description.refereed | TRUE | |
| dc.description.sponsorship | CAICYT | |
| dc.description.status | pub | |
| dc.eprint.id | https://eprints.ucm.es/id/eprint/15068 | |
| dc.identifier.doi | 10.1002/mana.19891430125 | |
| dc.identifier.issn | 0025-584X | |
| dc.identifier.officialurl | http://onlinelibrary.wiley.com/doi/10.1002/mana.19891430125/abstract | |
| dc.identifier.relatedurl | http://onlinelibrary.wiley.com/ | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/57215 | |
| dc.journal.title | Mathematische Nachrichten | |
| dc.page.final | 364 | |
| dc.page.initial | 355 | |
| dc.publisher | Wiley-VCH Verlag Berlin | |
| dc.relation.projectID | 0338/84 | |
| dc.rights.accessRights | metadata only access | |
| dc.subject.cdu | 517.986.6 | |
| dc.subject.keyword | Strictly singular | |
| dc.subject.keyword | Kato operator | |
| dc.subject.keyword | Strictly cosingular | |
| dc.subject.keyword | Pelczynski operator | |
| dc.subject.ucm | Análisis matemático | |
| dc.subject.unesco | 1202 Análisis y Análisis Funcional | |
| dc.title | Strictly singular and strictly cosingular operators on C(K,E). | |
| dc.type | journal article | |
| dc.volume.number | 143 | |
| dspace.entity.type | Publication |

