Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The prescribed curvature problem in dimension four.

dc.contributor.authorMuñoz Masqué, Jaime
dc.contributor.authorPozo Coronado, Luis Miguel
dc.contributor.authorSánchez Rodríguez, I.
dc.date.accessioned2023-06-20T09:43:04Z
dc.date.available2023-06-20T09:43:04Z
dc.date.issued2009
dc.description.abstractNecessary and sufficient conditions for a g-valued differential 2-form on a 4-dimensional manifold to be, locally, a curvature; form, are given. The dimension four is exceptional for the problem of prescribed curvature as, in this dimension, Bianchi's identities can be eliminated for a large class of Lie algebras, including semisimple algebras. Hence, the curvature forms are characterized as the solutions to a second-order partial differential system, which is proved to be formally integrable.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación
dc.description.sponsorshipJunta de Andalucía, P.A.I.
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17484
dc.identifier.doi10.1016/j.matpur.2009.10.003
dc.identifier.issn0021-7824
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0021782409001317
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50239
dc.journal.titleJournal de Mathématiques Pures et Appliquées
dc.language.isoeng
dc.page.final612
dc.page.initial599
dc.publisherElsevier
dc.relation.projectIDMTM2008-01386
dc.relation.projectIDFQM-324.
dc.rights.accessRightsrestricted access
dc.subject.cdu514
dc.subject.cdu515.1
dc.subject.keywordBianchi identity
dc.subject.keywordCurvature form
dc.subject.keywordFormal integrability
dc.subject.keywordLie algebra
dc.subject.ucmGeometría
dc.subject.ucmTopología
dc.subject.unesco1204 Geometría
dc.subject.unesco1210 Topología
dc.titleThe prescribed curvature problem in dimension four.
dc.typejournal article
dc.volume.number92
dcterms.referencesE. Angelopoulos, Algèbres de Lie g satisfaisant [g,g] = g, Derg = ad g, C. R. Acad. Sci. Paris Sér. I Math. 306 (13) (1988) 523–525. S. Benayadi, Structure of perfect Lie algebras without center and outer derivations, Ann. Fac. Sci. Toulouse Math. (6) 5 (2) (1996) 203–231. R.L. Bryant, S.S. Chern, R.B. Gardner, H.L. Goldschmidt, P.A. Griffiths, Exterior Differential Systems, Mathematical Sciences Research Institute Publications, vol. 18, Springer-Verlag, New York, 1991. D. DeTurck, H. Goldschmidt, J. Talvacchia, Connections with prescribed curvature and Yang–Mills currents: The semi-simple case, Ann. Sci.École Norm. Sup. (4) 24 (1) (1991) 57–112. D. DeTurck, H. Goldschmidt, J. Talvacchia, Local existence of connections with prescribed curvature, in: Differential Geometry, Global Analysis, and Topology, Halifax, NS, 1990, in: CMS Conf. Proc., vol. 12, Amer. Math. Soc., Providence, RI, 1991, pp. 13–25. V.V. Gorbatsevich, A.L. Onishchik, E.B. Vinberg, Lie Groups and Lie Algebras III. Structure of Lie Groups and Lie Algebras, Encyclopaedia Math. Sci., vol. 41, Springer-Verlag, Berlin, 1994;English transl. of: A.L. Onishchik, V.V. Gorbatsevich, E.B. Vinberg, Lie Groups and Lie Algebras III, in: Current Problems in Mathematics.Fundamental Directions, in: Itogi Nauki i Tekhniki, vol. 41, Akad. Nauk SSSR, Moscow, 1990. J.L. Koszul, Fibre Bundles and Differential Geometry, Tata Institute of Fundamental Research, Bombay, 1960. I.S. Krasil’shchik, V.V. Lychagin, A.M. Vinogradov,Geometry of jet spaces and nonlinear partial differential equations, in: A.B. Sosinskii (Ed.), Advanced Studies in Contemporary Mathematics, vol. 1, Gordon and Breach Science Publishers, New York, 1986 (translated from the Russian). M.A. Mostow, S. Shnider, Does a generic connection depend continuously on its curvature? Comm. Math. Phys. 90 (3) (1983) 417–432. M.A. Mostow, S. Shnider, Counterexamples to some results on the existence of field copies, Comm. Math. Phys. 90 (4)(1983) 521–526. M.A. Mostow, S. Shnider, The continuity of computing connections from curvatures, and of dividing smooth functions, in: Differential Geometric Methods in Mathematical Physics, Jerusalem, 1982, in: Math. Phys.Stud., vol. 6, Reidel, Dordrecht, 1984, pp. 45–54. S.P. Tsarev, Which 2-forms are locally curvature forms? Funktsional. Anal. i Prilozhen. 16 (3) (1982) 90–91 (in Russian); English transl.:Funct. Anal. Appl. 16 (3) (1982) 235–237.
dspace.entity.typePublication
relation.isAuthorOfPublication0124d449-632e-4dc8-9651-eb1975f330ab
relation.isAuthorOfPublication.latestForDiscovery0124d449-632e-4dc8-9651-eb1975f330ab

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Pozo01.pdf
Size:
195.54 KB
Format:
Adobe Portable Document Format

Collections