Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Long-term traffic flow forecasting using a hybrid CNN-BiLSTM model

dc.contributor.authorMéndez Hurtado, Manuel
dc.contributor.authorGarcía Merayo, María De Las Mercedes
dc.contributor.authorNúñez García, Manuel
dc.date.accessioned2025-04-10T14:07:19Z
dc.date.available2025-04-10T14:07:19Z
dc.date.issued2023-03-01
dc.description.abstractThe increase of road traffic in large cities during the last years has produced that long and short-term traffic flow forecasting is a critical need for the authorities. The availability of good traffic flow prediction methods is a must to make informed decisions concerning (punctual) traffic congestions. Previous work has shown that the accuracy of these methods decreases if we consider urban traffic and long-term predictions. In this paper we present a hybrid model, combining a Convolutional Neural Network and a Bidirectional Long–Short-Term Memory network, and apply it to long-term traffic flow prediction in urban routes. This model combines the capability of CNN to extract hidden valuable features from the input model and the capability of BiLSTM to understand the temporal context. In order to assess the usefulness of our model, we considered four streets of the city of Madrid with different characteristics and compared the results of our proposed model with the ones obtained by eight widely used baseline models. The results show that our hybrid model outperforms the baseline models with respect to three metrics commonly used in regression: mean absolute error, root mean squared error and accuracy.
dc.description.departmentDepto. de Sistemas Informáticos y Computación
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación
dc.description.sponsorshipComunidad de Madrid
dc.description.statuspub
dc.identifier.doi10.1016/j.engappai.2023.106041
dc.identifier.issn0952-1976
dc.identifier.urihttps://hdl.handle.net/20.500.14352/119486
dc.journal.titleEngineering Applications of Artificial Intelligence
dc.language.isoeng
dc.publisherElsevier
dc.relation.projectIDPID2021-122215NB-C31
dc.relation.projectIDS2018/TCS-4314
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordDeep learning
dc.subject.keywordHybrid models
dc.subject.keywordTraffic flow forecasting
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleLong-term traffic flow forecasting using a hybrid CNN-BiLSTM model
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number121
dspace.entity.typePublication
relation.isAuthorOfPublication74c73c62-45dd-4596-8953-1d4d04f1c008
relation.isAuthorOfPublication28ca46b8-d1eb-42e6-a6e2-f31b193b055b
relation.isAuthorOfPublication26825d32-1d0a-4bbb-b145-e014e22f1a88
relation.isAuthorOfPublication.latestForDiscovery74c73c62-45dd-4596-8953-1d4d04f1c008

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Long-term_traffic_flow.pdf
Size:
2.86 MB
Format:
Adobe Portable Document Format

Collections