What They Did Not Tell You About Algebraic (Non-)Existence, Mathematical (IR-)Regularity and (Non-)Asymptotic Properties of the Dynamic Conditional Correlation (DCC) Model

dc.contributor.authorMcAleer, Michael
dc.date.accessioned2023-06-17T17:54:14Z
dc.date.available2023-06-17T17:54:14Z
dc.date.issued2019
dc.description.abstractIn order to hedge efficiently, persistently high negative covariances or, equivalently, correlations, between risky assets and the hedging instruments are intended to mitigate against financial risk and subsequent losses. If there is more than one hedging instrument, multivariate covariances and correlations will have to be calculated. As optimal hedge ratios are unlikely to remain constant using high frequency data, it is essential to specify dynamic time-varying models of covariances and correlations. These values can either be determined analytically or numerically on the basis of highly advanced computer simulations. Analytical developments are occasionally promulgated for multivariate conditional volatility models. The primary purpose of the paper is to analyse purported analytical developments for the only multivariate dynamic conditional correlation model to have been developed to date, namely Engle’s (2002) widely-used Dynamic Conditional Correlation (DCC) model. Dynamic models are not straightforward (or even possible) to translate in terms of the algebraic existence, underlying stochastic processes, specification, mathematical regularity conditions, and asymptotic properties of consistency and asymptotic normality, or the lack thereof. The paper presents a critical analysis, discussion, evaluation and presentation of caveats relating to the DCC model, and an emphasis on the numerous dos and don’ts in implementing the DCC and related model in practice.
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.facultyInstituto Complutense de Análisis Económico (ICAE)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/54809
dc.identifier.issn2341-2356
dc.identifier.relatedurlhttps://www.ucm.es/icae/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/17472
dc.issue.number17
dc.language.isoeng
dc.page.total18
dc.publisherFacultad de CC Económicas y Empresariales. Instituto Complutense de Análisis Económico (ICAE)
dc.relation.ispartofseriesDocumentos de Trabajo del Instituto Complutense de Análisis Económico (ICAE)
dc.rights.accessRightsopen access
dc.subject.jelC22
dc.subject.jelC32
dc.subject.jelC51
dc.subject.jelC52
dc.subject.jelC58
dc.subject.jelC62
dc.subject.jelG32
dc.subject.keywordHedging
dc.subject.keywordCovariances
dc.subject.keywordCorrelations
dc.subject.keywordExistence
dc.subject.keywordMathematical regularity
dc.subject.keywordInvertibility
dc.subject.keywordLikelihood function
dc.subject.keywordStatistical asymptotic properties
dc.subject.keywordCaveats
dc.subject.keywordPractical implementation.
dc.subject.ucmEconomía financiera
dc.subject.ucmEconometría (Economía)
dc.subject.unesco5302 Econometría
dc.titleWhat They Did Not Tell You About Algebraic (Non-)Existence, Mathematical (IR-)Regularity and (Non-)Asymptotic Properties of the Dynamic Conditional Correlation (DCC) Model
dc.typetechnical report
dc.volume.number2019
dcterms.referencesAielli, G.P. (2011), Dynamic conditional correlation: On properties and estimation, Journal of Business & Economic Statistics, 31(3), 282-299. Bollerslev, T. (1986), Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31, 307-327. Engle, R.F. (1982), Autoregressive conditional heteroskedasticity, with estimates of the variance of United Kingdom inflation, Econornetrica, 50, 987-1007. Engle, R. (2002), Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models, Journal of Business & Economic Statistics, 20(3), 339-350. Marek, T. (2005), On invertibility of a random coefficient moving average model, Kybernetika, 41(1), 743-756. McAleer, M. (2014), Asymmetry and leverage in conditional volatility models, Econometrics, 2(3), 145-150. McAleer, M. (2018), Stationarity and invertibility of a dynamic correlation matrix, Kybernetika, 54(2), 2018, 363-374. McAleer, M. (2019), What they did not tell you about algebraic (non-)existence, mathematical (ir-)regularity and (non-)asymptotic properties of the full BEKK dynamic conditional covariance model, unpublished paper, Department of Finance, Asia University, Taiwan. McAleer, M., F. Chan, S. Hoti and O. Lieberman (2008), Generalized autoregressive conditional correlation, Econometric Theory, 24(6), 1554-1583. Tsay, R.S. (1987), Conditional heteroscedastic time series models, Journal of the American Statistical Association, 82, 590-604. Tse, Y.K. and A.K.C. Tsui (2002), A multivariate generalized autoregressive conditional heteroscedasticity model with time-varying correlations, Journal of Business & Economic Statistics, 20(3), 351-362.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1917.pdf
Size:
398.41 KB
Format:
Adobe Portable Document Format