Transformations of quadrilateral lattices

dc.contributor.authorDoliwa, Adam
dc.contributor.authorSantin, Maria Santin
dc.contributor.authorMañas Baena, Manuel Enrique
dc.date.accessioned2023-06-20T20:09:07Z
dc.date.available2023-06-20T20:09:07Z
dc.date.issued2000-02
dc.description©2000 American Institute of Physics. A.D. would like to thank A. Sym for pointing out (see also Ref. 47) the important role of the rectilinear congruences in the theory of integrable geometries (soliton surfaces). He also acknowledges partial support from KBN Grant No. 2P03 B 18509. M.M. acknowledges partial support from CICYT Proyect No. PB95-0401 and from the exchange agreement between Università La Sapienza of Rome and Universidad Complutense of Madrid
dc.description.abstractMotivated by the classical studies on transformations of conjugate nets, we develop the general geometric theory of transformations of their discrete analogs: the multidimensional quadrilateral lattices, i.e., lattices x:Z(N)--> R-M, N less than or equal to M, whose elementary quadrilaterals are planar. Our investigation is based on the discrete analog of the theory of the rectilinear congruences, which we also present in detail. We study, in particular, the discrete analogs of the Laplace, Combescure, Levy, radial, and fundamental transformations and their interrelations. The composition of these transformations and their permutability is also investigated from a geometric point of view. The deep connections between "transformations" and "discretizations" is also investigated for quadrilateral lattices. We finally interpret these results within the <(partial derivative)over bar> formalism.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipKBN
dc.description.sponsorshipCICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/32473
dc.identifier.doi10.1063/1.533175
dc.identifier.issn0022-2488
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.533175
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59689
dc.issue.number2
dc.journal.titleJournal of mathematical physics
dc.language.isoeng
dc.page.final990
dc.page.initial944
dc.publisherAmerican Institute of Physics
dc.relation.projectID2P03 B 18509
dc.relation.projectIDPB95-0401
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordIntegrable hierarchies
dc.subject.keywordCoordinate systems
dc.subject.keywordHydrodynamic-type
dc.subject.keywordEquation
dc.subject.keywordSurfaces
dc.subject.keywordDiscretization
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleTransformations of quadrilateral lattices
dc.typejournal article
dc.volume.number41
dcterms.references1. G. Darboux, Leçons Sur la Théorie Générale des Surfaces I–IV (Gauthier-Villars, Paris, 1887–1896). 2. G. Darboux, Lec¸ons Sur les Systémes Orthogonaux et les Coordonnées Curvilignes (Gauthier-Villars, Paris, 1910). 3. L. P. Eisenhart, Transformations of Surfaces (Princeton University Press, Princeton, 1923). 4. G. Lamé, Leçons Sur les Coordonnées Curvilignes et Leurs Diverses Applications (Mallet-Bachalier, Paris, 1859). 5. V. E. Zakharov and S. V. Manakov, ‘‘Construction of multidimensional nonlinear integrable systems and their solutions,’’ Funct. Anal. Appl. 19, 89 (1985). 6. V. E. Zakharov, ‘‘On integrability of the equations describing N-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type. Part 1. Integration of the Lamé equations,’’ Duke Math. J. 94, 103–139 (1998). 7. V. E. Zakharov and S. V. Manakov, ‘‘Reductions in systems integrated by the method of the inverse scattering problem,’’ Dokl. Akad. Nauk (Math.) 57, 471–474 (1998). 8. A. Sym, ‘‘Soliton surfaces and their applications (soliton geometry from spectral problems),’’ in Geometric Aspects of the Einstein Equations and Integrable Systems, Lecture Notes in Physics 239 (Springer-Verlag, Berlin, 1985), pp. 154–231. 9. A. Bobenko, ‘‘Surfaces in terms of 2 by 2 matrices. Old and new integrable cases,’’ in Harmonic Maps and Integrable Systems, edited by A. Fordy and J. Wood (Vieweg, Braunschweig, 1994). 10. A. Bobenko and U. Pinkall, ‘‘Discrete surfaces with constant negative Gaussian curvature and the Hirota equation,’’ J. Diff. Geom. 43, 527–611 (1996). 11. A. Doliwa and P. M. Santini, ‘‘Integrable dynamics of a discrete curve and the Ablowitz–Ladik hierarchy,’’ J. Math. Phys. 36, 1259–1273 (19959. 12. A. Bobenko and U. Pinkall, ‘‘Discrete isothermic surfaces,’’ J. Reine Angew. Math. 475, 187–208 (1996). 13. A. Bobenko and W. K. Schief, ‘‘Discrete affine spheres,’’ in Discrete Integrable Geometry and Physics, edited by A. Bobenko and R. Seiler (Oxford University Press, Oxford, 19999. 14. R. Sauer, Differenzengeometrie (Springer- Verlag, Berlin, 1970). 15. A. Doliwa and P. M. Santini, ‘‘Multidimensional quadrilateral lattices are integrable,’’ Phys. Lett. A 233, 365–372 (1997). 16. L. V. Bogdanov and B. G. Konopelchenko, ‘‘Lattice and q-difference Darboux–Zakharov– Manakov systems via δ͞ method,’’ J. Phys. A 28, L173–L178 (1995). 17. R. R. Martin, J. de Pont, and T. J. Sharrock, ‘‘Cyclic surfaces in computer aided design,’’ in The Mathematics of Surfaces, edited by J. A. Gregory (Clarendon, Oxford, 1986), pp. 253–268. 18. A. W. Nutbourne, ‘‘The solution of a frame matching equation,’’ in Ref. 17, pp. 233–252. 19. A. Bobenko, ‘‘Discrete conformal maps and surfaces,’’ in Symmetries and Integrability of Difference Equations II, edited by P. Clarkson and F. Nijhoff (Cambridge University Press, Cambridge, 1999), pp. 97–108. 20. J. Cieślińki, A. Doliwa, and P. M. Santini, ‘‘The integrable discrete analogues of orthogonal coordinate systems are multidimensional circular lattices,’’ Phys. Lett. A 235, 480–488 (1997). 21. A. Doliwa, S. V. Manakov, and P. M. Santini, ‘‘δ- reductions of the multidimensional quadrilateral lattice: the multidimensional circular lattice,’’ Commun. Math. Phys. 196, 1–18 (1998). 22. B. G. Konopelchenko and W. K. Schief, ‘‘Three- dimensional integrable lattices in Euclidean spaces: Conjugacy and orthogonality,’’ Proc. R. Soc. London, Ser. A 454, 3075–3104 (1998). 23. L. Bianchi, Lezioni di Geometria Differenziale (Zanichelli, Bologna, 1924). 24. A. Doliwa, M. Mañas, L. Martínez Alonso, E. Medina, and P. M. Santini, ‘‘Multi-component KP hierarchy and classical transformations of conjugate nets,’’ J. Phys. A 32, 1197–1216 (1999). 25. A. Doliwa, ‘‘Geometric discretisation of the Toda system,’’ Phys. Lett. A 234, 187–192 (1997). 26. R. Hirota, ‘‘Discrete analogue of a generalized Toda equation,’’ J. Phys. Soc. Jpn. 50, 3785–3791 (1981). 27. M. Mañas, A. Doliwa, and P. M. Santini, ‘‘Darboux transformations for multidimensional quadrilateral lattices. I,’’ Phys. Lett. A 232, 99–105 (19979. 28. D. Levi and R. Benguria, ‘‘Bäcklund transformations and nonlinear differential- difference equations,’’ Proc. Natl. Acad. Sci. USA 77, 5025–5027 (1980). 29. D. E. Rowe, ‘‘The early geometrical works of Sophus Lie and Felix Klein,’’ in The History of Modern Mathematics, edited by D. E. Rowe and J. McCleary (Academic, New York, 1989), pp. 209– 273. 30. E. P. Lane, Projective Differential Geometry of Curves and Surfaces (University of Chicago Press, Chicago, 1932). 31. L. P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces (Ginn and Company, Boston, 1909). 32. A. Doliwa, ‘‘Discrete integrable geometry with ruler and compass,’’ in Ref. 19, pp. 122–136. 33. E. V. Ferapontov, ‘‘Laplace transformations of hydrodynamic type systems in Riemann invariants: periodic sequences,’’ J. Phys. A 30, 6861–6878 (1997). 34. P. Samuel, Projective Geometry (Springer- Serlag, Berlin, 1988). 35. L. Lévy, ‘‘Sur quelques équations linéares aux dérivées partieles du second ordre,’’ J. Ecole Polytechnique 56, 63 (1886). 36. V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons (Springer-Verlag, Berlin, 1991). 37. W. Oevel and W. Schief, ‘‘Darboux theorems and the KP hierarchy,’’ in Application of Analytic and Geometric Methods to Nonlinear Differential Equations, edited by P. A. Clarkson (Kluwer, Dordrecht, 1992), pp. 193–206. 38. B. G. Konopelchenko and W. K. Schief, ‘‘Lamé and Zakharov–Manakov systems: Combescure, Darboux and Ba¨cklund transformations,’’ Applied Mathematics preprint AM93/9, The University of New South Wales. 39. H. Jonas, ‘‘Über die Transformation der konjugierten Systeme and über den gemeinsamen Ursprung der Bianchischen Permutabilitätstheoreme,’’ Sitzungsber. Berl. Math. Ges. 14, 96–118 (1915). 40. J. J. C. Nimmo and W. K. Schief, ‘‘Superposition principles associated with the Moutard transformation. An integrable discretisation of a (211)-dimensional sine-Gordon system,’’ Proc. R. Soc. London, Ser. A 453, 255–279 (1997). 41. E. I. Ganzha and S. P. Tsarev, ‘‘On superposition of the auto-Bäcklund transformation for (211)- dimensional integrable systems,’’ solv-int/9606003. 42. M. J. Ablowitz, D. Bar Yaacov, and A. S. Fokas, ‘‘On the inverse scattering problem for the Kadomtsev–Petviashvili equation,’’ Stud. Appl. Math. 69, 135 (1983). 43. L. V. Bogdanov and S. V. Manakov, ‘‘The nonlocal ͞δ-problem and (2+1)-dimensional soliton equations,’’ J. Phys. A 21, L537–L544 (1988). 44. L. V. Bogdanov and B. G. Konopelchenko, ‘‘Generalized integrable hierarchies and Combescure symmetry transformations,’’ J. Phys. A 30, 1591–1603 (1997). 45. L. V. Bogdanov and B. G. Konopelchenko, ‘‘Analytic-bilinear approach to integrable hierarchies II. Multicomponent KP and 2D Toda lattice hierarchies,’’ J. Math. Phys. 39, 4701–4728 (1998). 46. F. Calogero, Lett. Nuovo Cimento 14, 443 (1978). 47. R. Prus and A. Sym, ‘‘Rectilinear congruences and Bäcklund transformations: roots of the soliton theory,’’ in Proceedings of the 1st NOSONGE, Warsaw ’95 (Polish Scientific Publishers, Warsaw, 1998), pp. 25–36.
dspace.entity.typePublication
relation.isAuthorOfPublication0d5b5872-7553-4b33-b0e5-085ced5d8f42
relation.isAuthorOfPublication.latestForDiscovery0d5b5872-7553-4b33-b0e5-085ced5d8f42

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mañas28libre.pdf
Size:
708.31 KB
Format:
Adobe Portable Document Format

Collections