Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Synthesis and cathodoluminescence of undoped and Cr^(3+)-doped Sodium Titanate nanotubes and nanoribbons

dc.contributor.authorDíaz-Guerra Viejo, Carlos
dc.contributor.authorUmek, Paloma
dc.contributor.authorGloter, Alexandre
dc.contributor.authorPiqueras De Noriega, Francisco Javier
dc.date.accessioned2023-06-20T03:40:29Z
dc.date.available2023-06-20T03:40:29Z
dc.date.issued2010-05-13
dc.description© 2010 American Chemical Society. This work has been supported by MEC trough projects MAT2006-01259 and MAT2009-07882 and by the Slovenian Research Agency (J2-9217). P.U. and A.G. also acknowledge financial support from the European Union as a part of a Framework 6 program under a contract for an Integrated Infrastructure Initiative (reference 026019 ESTEEM).
dc.description.abstractWe report on the synthesis of Cr^(3+)-doped sodium titanate nanotubes and nanoribbons by a hydrothermal method. The presence of dopant ions in these nanostructures was confirmed by high angle annular dark field scanning transmission electron microscopy in combination with electron energy loss spectroscopy measurements. Luminescence properties of undoped and Cr^(3+)-doped sodium titanate nanotubes and nanoribbons were investigated by cathodoluminescence in the scanning electron microscope. A broad visible band in the range 1.7-2.7 eV is observed in these nanostructures. Such emission is similar to that observed in bulk anatase TiO_2 and titanate powders, and is related to TiO_6 octahedra, which is a common feature to all the samples investigated. Near-infrared emission, sometimes attributed to Ti^(3+) interstitials, is observed in bulk powders but is absent in the titanate nanotubes and nanoribbons. Incorporation of Cr^(3+) between the titanate layers of the nanostructures is revealed by the characteristic intraionic emission line at 1.791 eV. Sodium titanate nanoribbons appear to be an effective host for optically active Cr^(3+) ions, as compared with nanotubes or bulk powder.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMEC
dc.description.sponsorshipSlovenian Research Agency
dc.description.sponsorshipEuropean Union
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25673
dc.identifier.doi10.1021/jp1005132
dc.identifier.issn1932-7447
dc.identifier.officialurlhttp://dx.doi.org/10.1021/jp1005132
dc.identifier.relatedurlhttp://pubs.acs.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44217
dc.issue.number18
dc.journal.titleJournal of Physical Chemistry C
dc.language.isoeng
dc.page.final8198
dc.page.initial8192
dc.publisherElsevier Science BV
dc.relation.projectIDMAT2006-01259
dc.relation.projectIDMAT2009-07882
dc.relation.projectIDJ2-9217
dc.relation.projectID026019 ESTEEM
dc.rights.accessRightsrestricted access
dc.subject.cdu538.9
dc.subject.keywordTio_2
dc.subject.keywordOxide
dc.subject.keywordLuminescence
dc.subject.keywordMorphology
dc.subject.keywordPhotoluminescence
dc.subject.keywordNanostructures
dc.subject.keywordNanoparticles
dc.subject.keywordSpectroscopy
dc.subject.keywordGrowth
dc.subject.keywordStates
dc.subject.ucmFísica de materiales
dc.titleSynthesis and cathodoluminescence of undoped and Cr^(3+)-doped Sodium Titanate nanotubes and nanoribbons
dc.typejournal article
dc.volume.number114
dcterms.references(1) Diebold, U. Surf. Sci. Rep. 2003, 48, 53. (2) Madhusudan Reddy, K.; Manorama, S. V.; Ramachandra Reddy, A. Mater. Chem. Phys. 2002, 78, 239. (3) Wu, Z. Y.; Zhang, J.; Ibrahim, K.; Xian, D. C.; Li, G.; Tao, Y.; Hu, T. D.; Bellucci, S.; Marcelli, A.; Zhang, O. H.; Gao, L.; Chen, Z. Z. Appl. Phys. Lett. 2002, 80, 2973. (4) Tang, J.; Redl, F.; Zhu, Y.; Siegrist, T.; Brus, L. E.; Steigerwald, M. L. Nano Lett. 2005, 5, 543. (5) Song, L.; Lam, Y. M.; Boothroyd, C.; Teo, P. W. Nanotechnology 2007, 18, 135605. (6) Lei, Y.; Zhang, L. D.; Meng, G. W.; Li, G. H.; Zhang, X. Y.; Liang, C. H.; Chen, W.; Wang, S. X. Appl. Phys. Lett. 2001, 78, 1125. (7) Du, G. H.; Chen, Q.; Che, R. C.; Yuan, Z. Y.; Peng, L. M. Appl. Phys. Lett. 2001, 79, 3702. (8) Yao, B. D.; Chan, Y. F.; Zhang, X. Y.; Zhang, W. F.; Yang, Z. Y.; Wang, N. Appl. Phys. Lett. 2003, 82, 281. (9) Pradham, S. K.; Reucroft, P. J.; Yang, F.; Dozier, A. J. Cryst. Growth 2003, 256, 83. (10) Maestre, D.; Cremades, A.; Piqueras, J. Nanotechnology 2006, 17, 1584. (11) Maestre, D.; Cremades, A.; Gregoratti, L.; Piqueras, J. J. Nanosci. Nanotechnol. 2008, 8, 6533. (12) Hagfeldt, A.; Gra¨tzel, M. Chem. ReV. 1995, 95, 49. (13) Ramírez-Salgado, J.; Djurado, E.; Fabry, P. J. Eur. Ceram. Soc. 2004, 24, 2477. (14) Anderson, M. W.; Klinowski, J. Inorg. Chem. 1990, 29, 3260. (15) Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Langmuir 1998, 14, 3160. (16) Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. AdV. Mater. 1999, 11, 1307. (17) Ma, R.; Sasaki, T.; Bando, Y. Chem. Commun. 2005, 948. (18) Li, J.; Tang, Z.; Zhang, Z. Chem. Mater. 2007, 17, 5848. (19) Tsai, C.-C.; Teng, H. Chem. Mater. 2004, 16, 4352. (20) Umek, P.; Cevc, P.; Jesih, A.; Gloter, A.; Ewels, C. P.; Areón, D. Chem. Mater. 2005, 17, 5945. (21) Sun, X.; Li, Y. Chem.sEur. J. 2003, 9, 2229. (22) Riss, A.; Berger, T.; Grothe, H.; Bernardi, J.; Diwald, O.; Knözinger, E. Nano Lett. 2007, 7, 433. (23) Umek, P.; Korosˇec, R. C.; Janear, B.; Dominko, R.; Areón, D. J. Nanosci. Nanotechnol. 2007, 7, 3502. (24) Umek, P.; Pregelj, M.; Gloter, A.; Cevc, P.; Jaglie`iæ, Z.;E` eh, M.; Pirnat, U.; Are`on, D. J. Phys. Chem. C 2008, 112, 15311. (25) Yang, J.; Li, D.; Wang, X.; Yang, X.; Lu, L. J. Mater. Sci. 2003, 38, 2907. (26) Rai, D.; Sass, B. M.; Moore, D. A. Inorg. Chem. 1987, 26, 345. (27) Laswick, J. A.; Plane, R. A. J. Am. Chem. Soc. 1959, 81, 3564. (28) Papa, A.-L.; Millot, N.; Saviot, L.; Chassagnon, R.; Heintz, O. J. Phys. Chem. C 2009, 113, 12682. (29) Sanjines, R.; Tang, H.; Berger, H.; Gozzo, F.; Margaritondo, G.; Levy, F. J. Appl. Phys. 1994, 75, 2945. (30) Fernández, I.; Cremades, A.; Piqueras, J. Semicond. Sci. Technol. 2005, 20, 239. (31) Plugaru, R.; Cremades, A.; Piqueras, J. J. Phys.: Condens. Matter 2004, 16, S261. (32) Rothschild, A.; Levakov, A.; Shapira, Y.; Ashkenasy, N.; Komem, Y. Surf. Sci. 2003, 532-535, 456. (33) Montoncello, F.; Carotta, M. C.; Cavicchi, B.; Ferroni, M.; Giberti, A.; Guidi, V.; Malagu´, C.; Martinelli, G.; Meinardi, F. J. Appl. Phys. 2003, 94, 1501. (34) Gao, T.; Wu, Q.; Fjellvag, H.; Norby, P. J. Phys. Chem. C 2008, 112, 8548. (35) Suetake, J.; Nosaka, A. Y.; Hodouchi, K.; Matsubara, H.; Nosaka, Y. J. Phys, Chem. C 2008, 112, 18474. (36) Boulon, G. Transition Metal Ion LaserssCr3+. In Handbook of Laser Technology and Applications; Webb, C., Jones, J., Eds.;
dspace.entity.typePublication
relation.isAuthorOfPublicationb1b44979-3a0d-45d7-aa26-a64b0dbfee18
relation.isAuthorOfPublication68dabfe9-5aec-4207-bf8a-0851f2e37e2c
relation.isAuthorOfPublication.latestForDiscoveryb1b44979-3a0d-45d7-aa26-a64b0dbfee18

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PiquerasJ38.pdf
Size:
2.62 MB
Format:
Adobe Portable Document Format

Collections