Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

New Developments in Statistical Information Theory Based on Entropy and Divergence Measures

dc.contributor.authorPardo, Leandro
dc.date.accessioned2023-06-17T12:32:22Z
dc.date.available2023-06-17T12:32:22Z
dc.date.issued2019
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/63186
dc.identifier.doi10.3390/e21040391
dc.identifier.issn1099-4300
dc.identifier.officialurlhttps://doi.org/10.3390/e21040391
dc.identifier.relatedurlhttps://www.mdpi.com/1099-4300/21/4/391
dc.identifier.urihttps://hdl.handle.net/20.500.14352/12433
dc.issue.number4
dc.journal.titleEntropy
dc.language.isoeng
dc.page.initial391
dc.publisherhttps://www.mdpi.com/
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu162.2
dc.subject.keywordWald type test
dc.subject.keywordVariable selection
dc.subject.keywordLikelihood
dc.subject.keywordRobust
dc.subject.keywordInference
dc.subject.keywordModels
dc.subject.keywordTests
dc.subject.keywordTest de Wald
dc.subject.keywordProbabilidad
dc.subject.keywordModelos
dc.subject.keywordInferencia
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.ucmProbabilidades (Matemáticas)
dc.subject.unesco12 Matemáticas
dc.titleNew Developments in Statistical Information Theory Based on Entropy and Divergence Measures
dc.typejournal article
dc.volume.number21
dcterms.references1. Basu, A.; Shioya, H.; Park, C. Statistical Inference: The Minimum Distance Approach; Chapman and Hall/CRC: Boca Raton, FL, USA, 2011. [Google Scholar] 2. Pardo, L. Statistical Inference Based on Divergence Measures; Chapman and Hall/CRC: Boca Raton, FL, USA, 2006. [Google Scholar] 3. Ghosh, A.; Basu, A.; Pardo, L. Robust Wald-type tests under random censoring. arXiv, 2017; arXiv:1708.09695. [Google Scholar] 4. Basu, A.; Mandal, A.; Martín, N.; Pardo, L. A Robust Wald-Type Test for Testing the Equality of Two Means from Log-Normal Samples. Methodol. Comput. Appl. Probab. 2019, 21, 85–107. [Google Scholar] [CrossRef] 5. Basu, A.; Mandal, A.; Martin, N.; Pardo, L. Robust tests for the equality of two normal means based on the density power divergence. Metrika 2015, 78, 611–634. [Google Scholar] [CrossRef] 6. Basu, A.; Ghosh, A.; Mandal, A.; Martín, N.; Pardo, L. A Wald-type test statistic for testing linear hypothesis in logistic regression models based on minimum density power divergence estimator. Electron. J. Stat. 2017, 11, 2741–2772. [Google Scholar] [CrossRef] 7. Castilla, E.; Ghosh, A.; Martín, N.; Pardo, L. New robust statistical procedures for polytomous logistic regression models. Biometrics 2019, in press. [Google Scholar] [CrossRef] 8. Martín, N.; Pardo, L.; Zografos, K. On divergence tests for composite hypotheses under composite likelihood. Stat. Pap. 2019, in press. [Google Scholar] [CrossRef] 9. Ghosh, A.; Basu, A. A Generalized Relative (α,β)-Entropy: Geometric Properties and Applications to Robust Statistical Inference. Entropy 2018, 20, 347. [Google Scholar] [CrossRef] 10. Maji, A.; Ghosh, A.; Basu, A. The Logarithmic Super Divergence and Asymptotic Inference Properties. AStA Adv. Stat. Anal. 2016, 100, 99–131. [Google Scholar] [CrossRef] 11. Wu, Y.; Hooker, G. Asymptotic Properties for Methods Combining the Minimum Hellinger Distance Estimate and the Bayesian Nonparametric Density Estimate. Entropy 2018, 20, 955. [Google Scholar] [CrossRef] 12. Beran, R. Minimum Hellinger Distance Estimates for Parametric Models. Ann. Stat. 1977, 5, 445–463. [Google Scholar] [CrossRef] 13. Castilla, E.; Martín, N.; Pardo, L.; Zografos, K. Composite Likelihood Methods Based on Minimum Density Power Divergence Estimator. Entropy 2018, 20, 18. [Google Scholar] [CrossRef] 14. Varin, C.; Reid, N.; Firth, D. An overview of composite likelihood methods. Stat. Sin. 2011, 21, 4–42. [Google Scholar] 15. Broniatowski, M.; Jurečková, J.; Moses, A.K.; Miranda, E. Composite Tests under Corrupted Data. Entropy 2019, 21, 63. [Google Scholar] [CrossRef] 16. Abdullah, O. Convex Optimization via Symmetrical Hölder Divergence for a WLAN Indoor Positioning System. Entropy 2018, 20, 639. [Google Scholar] [CrossRef] 17. Nielsen, F.; Sun, K.; Marchand-Maillet, S. k-Means Clustering with Hölder Divergences. In Proceedings of the International Conference on Geometric Science of Information, Paris, France, 7–9 November 2017. [Google Scholar] 18. Broniatowski, M.; Jurečková, J.; Kalina, J. Likelihood Ratio Testing under Measurement Errors. Entropy 2018, 20, 966. [Google Scholar] [CrossRef] 19. Alba-Fernández, M.V.; Jiménez-Gamero, M.D.; Ariza-López, F.J. Minimum Penalized ϕ-Divergence Estimation under Model Misspecification. Entropy 2018, 20, 329. [Google Scholar] [CrossRef] 20. Markatou, M.; Chen, Y. Non-Quadratic Distances in Model Assessment. Entropy 2018, 20, 464. [Google Scholar] [CrossRef] 21. Kateri, M. ϕ-Divergence in Contingency Table Analysis. Entropy 2018, 20, 324. [Google Scholar] [CrossRef] 22. Goodman, L.A. Association models and canonical correlation in the analysis of cross-classifications having ordered categories. J. Am. Stat. Assoc. 1981, 76, 320–334. [Google Scholar] 23. Kawashima, T.; Fujisawa, H. Robust and Sparse Regression via γ-Divergence. Entropy 2017, 19, 608. [Google Scholar] [CrossRef] 24. Kanamori, T.; Fujisawa, H. Robust estimation under heavy contamination using unnormalized models. Biometrika 2015, 102, 559–572. [Google Scholar] [CrossRef] 25. Fan, J.; Li, R. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties. J. Am. Stat. Assoc. 2001, 96, 1348–1360. [Google Scholar] [CrossRef][Green Version] 26. Zhang, C.H. Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 2010, 38, 894–942. [Google Scholar] [CrossRef][Green Version] 27. Zhang, C.; Zhang, Z. Robust-BD Estimation and Inference for General Partially Linear Models. Entropy 2017, 19, 625. [Google Scholar] [CrossRef] 28. Fan, J.; Huang, T. Profile likelihood inferences on semiparametric varying-coefficient partially linear models. Bernoulli 2005, 11, 1031–1057. [Google Scholar] [CrossRef] 29. Toma, A.; Fulga, C. Robust Estimation for the Single Index Model Using Pseudodistances. Entropy 2018, 20, 374. [Google Scholar] [CrossRef] 30. Sharpe, W.F. A simplified model to portfolio analysis. Manag. Sci. 1963, 9, 277–293. [Google Scholar] [CrossRef] 31. Li, L.; Vidyashankar, A.N.; Diao, G.; Ahmed, E. Robust Inference after Random Projections via Hellinger Distance for Location-scale Family. Entropy 2019, 21, 348. [Google Scholar] [CrossRef] 32. Guo, X.; Zhang, C. Robustness Property of Robust-BD Wald-Type Test for Varying-Dimensional General Linear Models. Entropy 2018, 20, 168. [Google Scholar] [CrossRef] 33. Zhang, C.M.; Guo, X.; Cheng, C.; Zhang, Z.J. Robust-BD estimation and inference for varying-dimensional general linear models. Stat. Sin. 2012, 24, 653–673. [Google Scholar] [CrossRef] 34. Heritier, S.; Ronchetti, E. Robust bounded-influence tests in general parametric models. J. Am. Stat. Assoc. 1994, 89, 897–904. [Google Scholar] [CrossRef] 35. Ronchetti, E.; Trojani, F. Robust inference with GMM estimators. J. Econom. 2001, 101, 37–69. [Google Scholar] [CrossRef][Green Version] 36. Basu, A.; Ghosh, A.; Martin, N.; Pardo, L. Robust Wald-type tests for non-homogeneous observations based on minimum density power divergence estimator. Metrika 2018, 81, 493–522. [Google Scholar] [CrossRef] 37. Hirose, K.; Masuda, H. Robust Relative Error Estimation. Entropy 2018, 20, 632. [Google Scholar] [CrossRef] 38. Fujisawa, H.; Eguchi, S. Robust parameter estimation with a small bias against heavy contamination. J. Multivar. Anal. 2008, 99, 2053–2081. [Google Scholar] [CrossRef][Green Version]
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
entropy-21-00391.pdf
Size:
204.95 KB
Format:
Adobe Portable Document Format

Collections