Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Isostables for Stochastic Oscillators

dc.contributor.authorPérez Cervera, Alberto
dc.contributor.authorLindner, Benjamin
dc.contributor.authorThomas, Peter J.
dc.date.accessioned2023-06-16T14:25:39Z
dc.date.available2023-06-16T14:25:39Z
dc.date.issued2021-12-14
dc.description.abstractThomas and Lindner [P. J. Thomas and B. Lindner, Phys. Rev. Lett. 113, 254101 (2014).], defined an asymptotic phase for stochastic oscillators as the angle in the complex plane made by the eigenfunction, having a complex eigenvalue with a least negative real part, of the backward Kolmogorov (or stochastic Koopman) operator. We complete the phase-amplitude description of noisy oscillators by defining the stochastic isostable coordinate as the eigenfunction with the least negative nontrivial real eigenvalue. Our results suggest a framework for stochastic limit cycle dynamics that encompasses noise-induced oscillations.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/76887
dc.identifier.doi10.1103/PhysRevLett.127.254101
dc.identifier.issn0031-9007
dc.identifier.officialurlhttps://doi.org/10.1103/PhysRevLett.127.254101
dc.identifier.urihttps://hdl.handle.net/20.500.14352/5004
dc.journal.titlePhysical review letters
dc.language.isoeng
dc.page.initial254101
dc.publisherAmerican Physical Society
dc.rights.accessRightsopen access
dc.subject.cdu517
dc.subject.ucmAnálisis matemático
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleIsostables for Stochastic Oscillators
dc.typejournal article
dc.volume.number127
dcterms.references[1] H. Bryant, Jr., A. R. Marcos, and J. Segundo, J. Neurophysiol. 36, 205 (1973). [2] J. T. Walter, K. Alvina, M. D. Womack, C. Chevez, and K.Khodakhah, Nat. Neurosci. 9, 389 (2006). [3] P. Martin, D. Bozovic, Y. Choe, and A. J. Hudspeth, J. Neurosci. 23, 4533 (2003). [4] A. Skupin, H. Kettenmann, U. Winkler, M. Wartenberg, H. Sauer, S. C. Tovey, C. W. Taylor, and M. Falcke, Biophys. J. 94, 2404 (2008). [5] A. J. McKane and T. J. Newman, Phys. Rev. Lett. 94, 218102 (2005). [6] R. Feistel and W. Ebeling, Physica (Amsterdam) 93A, 114 (1978). [7] A. Ganopolski and S. Rahmstorf, Phys. Rev. Lett. 88, 038501 (2002). [8] B. McNamara, K. Wiesenfeld, and R. Roy, Phys. Rev. Lett. 60, 2626 (1988). [9] A. Guillamon and G. Huguet, SIAM J. Appl. Dyn. Syst. 8, 1005 (2009). [10] D. Wilson and B. Ermentrout, Phys. Rev. Lett. 123, 164101 (2019). [11] D. Wilson, Phys. Rev. E 101, 022220 (2020). [12] A. P´erez-Cervera, T. M-Seara, and G. Huguet, Chaos 30,083117 (2020). [13] A. Pikovsky, J. Kurths, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, England, (2003), Vol. 12. [14] O. Castejón, A. Guillamon, and G. Huguet, J. Math. Neurosci. 3, 13 (2013). [15] S. Shirasaka, W. Kurebayashi, and H. Nakao, Chaos 27, 023119 (2017). [16] D. Wilson and B. Ermentrout, J. Math. Biol. 76, 37 (2018). [17] B. Monga, D. Wilson, T. Matchen, and J. Moehlis, Biol. Cybern. 113, 11 (2019). [18] J. Guckenheimer, J. Math. Biol. 1, 259 (1975). [19] G. E. Uhlenbeck and L. S. Ornstein, Phys. Rev. 36, 823 (1930). [20] J. Giner-Baldó, P. J. Thomas, and B. Lindner, J. Stat. Phys. 168, 447 (2017). [21] B. Lindner, J. Garcıa-Ojalvo, A. Neiman, and L. Schimansky-Geier, Phys. Rep. 392, 321 (2004). [22] For an example in which k ≠ n, see [23,24]. [23] S. Pu and P. J. Thomas, Biol. Cybern. 115, 267 (2021). [24] S. Pu and P. J. Thomas, Neural Comput. 32, 1775 (2020). [25] We choose the Itô interpretation for its mathematical convenience. For every Stratonovich-interpreted SDE there is an equivalent Itô-interpreted SDE [26]. Thus, choosing between the Itô or the Stratonovich interpretation will not change our framework, which is based on the (uniquely defined) backward Kolmogorov operator. [26] C. W. Gardiner, Handbook of Stochastic Methods (Springerverlag, Berlin, 1985). [27] J. T. C. Schwabedal and A. Pikovsky, Phys. Rev. Lett. 110, 204102 (2013). [28] A. Cao and B. Lindner, and P. J. Thomas, SIAM J. Appl. Math. 80, 422 (2020). [29] P. J. Thomas and B. Lindner, Phys. Rev. Lett. 113, 254101 (2014). [30] For an alternative approach to phase reduction for stochastic oscillators see [27,28]. [31] P. J. Thomas and B. Lindner, Phys. Rev. E 99, 062221 (2019). [32] In the n > 2 case, we expect n − 1 stochastic amplitudes Σi corresponding to the n − 1 deterministic Floquet modes. The effective vector field would be determined by a system of n equations, e.g., ∇Q �ðxÞ · FðxÞ ¼ λ�Q �ðxÞ, ∇Σi ðxÞ · FðxÞ ¼ λi FloqΣi ðxÞ, for 1 ≤ i ≤ n − 1. If jλ1 Floqj ≪jλi Floqj for i > 1, we expect the flow generated by F will have a 2D invariant manifold Σi ¼ 0;i> 1, on which the dynamics will be well approximated by our 2D (phase, amplitude) construction. [33] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevLett.127.254101 for the numerical procedure generating the results in this Letter. [34] T. K. Leen, R. Friel, and D. Nielsen, arXiv:1609.01194. [35] A. S. Powanwe and A. Longtin, Sci. Rep. 9, 18335 (2019). [36] N. Črnjarić-Žic, S. Maćešić, and I. Mezić, J. Nonlinear Sci. 30, 2007 (2019). [37] V. S. Afraimovich, M. I. Rabinovich, and P. Varona, Int. J. Bifurcation Chaos Appl. Sci. Eng. 14, 1195 (2004). [38] D. Armbruster, E. Stone, and V. Kirk, Chaos 13, 71 (2003). [39] R. M. May and W. J. Leonard, SIAM J. Appl. Math. 29, 243 (1975). [40] In [29] Thomas and Lindner numerically solved the eigenvalue problem Eq. (4) for the heteroclinic system Eq. (13) using a Fourier mode decomposition method. Due to a subtle error in our treatment of the boundary conditions, the slowest decaying real eigenvalue plotted in Fig. 2(c) of [29] was incorrect. It has been corrected in Fig. 3(a) of this Letter. This error had no effect on the analysis or conclusions in [29], which concerned only the complex-valued eigenvalue and its eigenfunction. [41] C. A. Lugo and A. J. McKane, Phys. Rev. E 78, 051911 (2008). [42] H. A. Brooks and P. C. Bressloff, Phys. Rev. E 92, 012704 (2015). [43] P. C. Bressloff, Phys. Rev. E 82, 051903 (2010). [44] B. Duchet, G. Weerasinghe, C. Bick, and R. Bogacz, J. Neural Eng. 18, 046023 (2021). [45] L. Arnold, Random Dynamical Systems (Springer, New York, 1995). [46] A. S. Pikovsky and J. Kurths, Phys. Rev. Lett. 78, 775 (1997). [47] O. V. Ushakov, H.-J. Wünsche, F. Henneberger, I. A. Khovanov, L. Schimansky-Geier, and M. A. Zaks, Phys.Rev. Lett. 95, 123903 (2005). [48] A. Mauroy and I. Mezić, Chaos 28, 073108 (2018). [49] S. Shirasaka, W. Kurebayashi, and H. Nakao, in The Koopman Operator in Systems and Control (Springer, New York, 2020), pp. 383–417. [50] Y. Kato and H. Nakao, arXiv:2006.00760. [51] M. Engel and C. Kuehn, Commun. Math. Phys. 386, 1603 (2021). [52] Y. Kato, J. Zhu, W. Kurebayashi, and H. Nakao, Mathematics 9, 2188 (2021). [53] M. Budišić, R. Mohr, and I. Mezić, Chaos 22, 047510 (2012). [54] A. Mauroy, Y. Susuki, and I. Mezić, The Koopman Operator in Systems and Control (Springer, New York, (2020). [55] J. L. Proctor, S. L. Brunton, and J. N. Kutz, SIAM J. Appl. Dyn. Syst. 15, 142 (2016). [56] P. J. Schmid, J. Fluid Mech. 656, 5 (2010).
dspace.entity.typePublication
relation.isAuthorOfPublicationde495841-c58a-47a5-b14f-3c4ba7dc9f96
relation.isAuthorOfPublication.latestForDiscoveryde495841-c58a-47a5-b14f-3c4ba7dc9f96

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
perez_cervera_isostables.pdf
Size:
2.67 MB
Format:
Adobe Portable Document Format

Collections