Application of dynamic merit function to nonimaging systems optimization

dc.contributor.authorÁlvarez Fernández-Balbuena, Antonio
dc.contributor.authorGonzález Montes, Mario
dc.contributor.authorGarcía Botella, Ángel
dc.contributor.authorVázquez Moliní, Daniel
dc.date.accessioned2023-06-18T05:42:02Z
dc.date.available2023-06-18T05:42:02Z
dc.date.issued2015-02-09
dc.descriptionCopyright 2015. Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
dc.description.abstractAutomatic optimization algorithms have been recently introduced as nonimaging optics design techniques. Unlike optimization of imaging systems, nonsequential ray tracing simulations and complex noncentered systems design must be considered, adding complexity to the problem. The merit function is a key element in the automatic optimization algorithm; nevertheless, the selection of each objective’s weight, {wi}{wi}, inside the merit function needs a prior trial and error process for each optimization. The problem then is to determine appropriate weights’ values for each objective. We propose a new dynamic merit function with variable weight factors {wi(n)}{wi(n)}. The proposed algorithm automatically adapts weight factors during the evolution of the optimization process. This dynamic merit function avoids the previous trial and error procedure by selecting the right merit function and provides better results than conventional merit functions.
dc.description.departmentSección Deptal. de Óptica (Óptica)
dc.description.facultyFac. de Óptica y Optometría
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/40924
dc.identifier.citation1. Cassarly W. J., and Hayford M. J., “Illumination optimization: the revolution has begun,” Proc. SPIE. 4832, 258–269 (2002). 0277-786X. 2. Lammbda Research Corporation—Europe, Tracepro software, 2014,http://www.lambdares.com/ (2015). 3. Synopsy's Optical Solutions Group, Lightools software, 2014, http://www.opticalres.com/ (2015). 4. Cassarly W. J., “Illumination merit functions,” Proc. SPIE. 6670, , 142 –154 (2007). 0277-786X. 5. Koshel J. R., “Aspects of illumination system optimization,” Proc. SPIE. 5529, , 206–217 (2004). 0277-786X. 6. Gao Z. et al., “A global approach for digital speckle correlation,” 2002, http://sem-proceedings.com/02s/sem.org-2002-SEM-Ann-Conf-SEM165-A-Global-Approach-Digital-Speckle-Correlation.pdf (19 January 2015). 7. Koshel J. R., “Simplex optimization method for illumination design,” Opt. Lett.. 30, (6 ), 649–651 (2005). 0146-9592. 8. Jin Y., Okabe T., and Sendhoff B., “Adapting weighted aggregation for multiobjective evolution strategies,” in Lecture Notes in Computer Science., Vol. 1993, pp. 96 –110, Springer-Verlag, Berlin, Heidelberg (2001). 9. Luo X. et al., “Automated optimization of an aspheric light-emitting diode lens for uniform illumination,” Appl. Opt. 50, (20), 3412–3418 (2011). 0003-6935. 10. Koshel R. J., “Fractional optimization of illumination optics,” Proc. SPIE. 7061, 70610F (2008). 0277-786X. 11. Lagarias J. C. et al., “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM J. Optim. 9, (1), 112–147 (1998). 1095-7189. 12. Koshel R. J., Illumination Engineering: Design with Nonimaging Optics., p. 281, Wiley-IEEE Press, Hoboken, New Jersey (2013). 13. Shatz N. E., and Bortz J. C., “Optimal design of a nonimaging TIR doublet lens for an illumination system using an LED source,” Proc. SPIE. 5529, 176–185 (2004). 0277-786X 14. Gilli M., and Schumann E., “A note on ‘good starting values’ in numerical optimization,” 2010, http://comisef.eu/files/wps044.pdf (19 January 2015). 15. Ispas G. “A theoretical comparison between batwing and lambertian distributions of power LEDs related to an interior lighting system,” Adv. Environ. Technol. Biotechnol. (2014). 16. Rea M. S., The IESNA Lightning Handbook: Reference & Applications, 9th ed., pp. 480–490, Illuminating Engineering Society of North America (IESNA), New York (2000). 17. Katzev R., “The impact of energy-efficient office lighting strategies on employee satisfaction and productivity,” Environ. Behav.. 24, (6 ), 759 –778 (1992). 0013-9165. 18. Montes M. G., Fernandez-Balbuena A. A., and Bernabeu E., “Beacon system based on light-emitting diode sources for runways lighting,” Opt. Eng. 53, (6), 066104 (2014). 0091-3286.
dc.identifier.doi10.1117/1.OE.54.2.025107
dc.identifier.issn0091-3286
dc.identifier.officialurlhttp://dx.doi.org/10.1117/1.OE.54.2.025107
dc.identifier.relatedurlhttp://opticalengineering.spiedigitallibrary.org/article.aspx?articleid=2119106
dc.identifier.urihttps://hdl.handle.net/20.500.14352/23088
dc.issue.number2
dc.journal.titleOptical Engineering
dc.language.isoeng
dc.page.initial025107
dc.publisherSpie-Soc Photo-Optical Instrumentation Engineers
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordDynamic merit function
dc.subject.keywordDynamic weights
dc.subject.keywordNon imaging systems
dc.subject.keywordOptical optimization
dc.subject.ucmÓptica (Física)
dc.subject.ucmÓptica no líneal
dc.subject.unesco2209.19 Óptica Física
dc.subject.unesco2209.13 Óptica no lineal
dc.titleApplication of dynamic merit function to nonimaging systems optimization
dc.typejournal article
dc.volume.number54
dspace.entity.typePublication
relation.isAuthorOfPublication66947707-bb8e-476d-8178-cd98a8796992
relation.isAuthorOfPublication.latestForDiscovery66947707-bb8e-476d-8178-cd98a8796992
Download
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Application dynamic-OptEngine-2015.pdf
Size:
1.81 MB
Format:
Adobe Portable Document Format
Collections