Homogenization in Chemical Reactive Flows

dc.contributor.authorConca, Carlos
dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorLiñán, Amable
dc.contributor.authorTimofte, C.
dc.date.accessioned2023-06-20T10:55:03Z
dc.date.available2023-06-20T10:55:03Z
dc.date.issued2004
dc.description.abstractThis paper concerns the homogenization of two nonlinear models for chemical reactive flows through the exterior of a domain containing periodically distributed reactive solid grains (or reactive obstacles). In the first model, the chemical reactions take place on the walls of the grains, while in the second one the fluid penetrates the grains and the reactions take place therein. The effective behavior of these reactive flows is described by a new elliptic boundary-value problem containing an extra zero-order term which captures the effect of the chemical reactions.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipFondap through its Programme on Mathematical Mechanics
dc.description.sponsorshipChilean and French Governments-e Scientific Committee EcosConicyt
dc.description.sponsorshipDGISGPI (Spain)
dc.description.sponsorshipEC
dc.description.sponsorshipEuropean Research Training Network HMS 2000
dc.description.sponsorshipUniversidad de Chile. Centro de Modelamiento Matemático
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30826
dc.identifier.issn1072-6691
dc.identifier.officialurlhttp://ejde.math.txstate.edu/Volumes/2004/40/conca.pdf
dc.identifier.relatedurlhttp://ejde.math.txstate.edu/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51447
dc.journal.titleElectronic Journal of Differential Equations
dc.language.isoeng
dc.page.final22
dc.page.initial1
dc.publisherDepartment of Mathematics Texas State University
dc.relation.projectIDREN2003-0223-C03
dc.relation.projectIDRTNHPRN-CT-2002-00274
dc.relation.projectIDHPRN-2000-00109
dc.rights.accessRightsopen access
dc.subject.cdu517.98
dc.subject.keywordHomogenization
dc.subject.keywordreactive flows
dc.subject.keywordvariational inequality
dc.subject.keywordmonotone graph
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleHomogenization in Chemical Reactive Flows
dc.typejournal article
dc.volume.number40
dcterms.referencesS. N. Antontsev, A. V. Kazhikhov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, North-Holland, Amsterdam, 1990. T. Arbogast, J. Douglas and U. Hornung, Derivation of the double porosity model of a single phase flow via homogenization theory, SIAM J. Math. Anal. 21 (1990), pp. 823–836. R. Aris, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysis, Clarendon Press, Oxford, 1975. J. Bear, Dynamics of Fluids in Porous Media, Elsevier, New York, 1972. A. Bourgeat, Two-phase flow, in [19], pp. 95–127. A. Bourgeat, S. Luckhaus and A. Mikelic, Convergence of the homogenization process for a double-porosity model of immiscible two-phase flow, SIAM J. Math. Anal. 27,(1996),pp. 1520–1543. A. Braides and A. Defranceschi, Homogenization of Multiple Integrals, Oxford University Press, Oxford, 1998. H. Brézis, Problèmes unilatéraux, J. Math. Pures et Appl. 51 (1972), pp. 1–168. D. Cioranescu and P. Donato, Homogénéisation du problème de Neumann non homogène dans des ouverts perforés,Asymptotic Anal. 1 (1988), pp. 115–138. D. Cioranescu and J. Saint Jean Paulin, Homogenization in open sets with holes, J. Math. Anal. Appl. 71 (1979), pp. 590–607. C. Conca, On the application of the homogenization theory to a class of problems arising in fluid mechanics, J. Math. Pures Appl. 64 (1985), pp. 31–75. C. Conca, J.I. Díaz and C. Timofte, Effective chemical processes in porous media, Math. Models Methods Appl. Sci. (M3AS), 13 (10) (2003), pp. 1437–1462. C. Conca and P. Donato, Non homogeneous Neumann problems in domains with small holes, RAIRO Modél. Math. Anal. Numér. 22 (1988), pp. 561–607. C. Conca, F. Murat and C. Timofte, A generalized strange term in Signorini’s type problems, Math. Model. Numer. Anal. (M2AN), 37 (5) (2003), pp. 773–806. G. Dal Maso, An Introduction to Γ− Convergence, Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser, Boston, 1993. J. I. Díaz, Nonlinear Parabolic Problems in Fluid Mechanics, Lecture Notes of a Postgraduate Course at the Universidad de Oviedo (Spain), notes in Spanish taken by A. Mateos and R. Sarandeses, 1992. J. I. Díaz, Two problems in homogenization of porous media, Extracta Mathematica, 14(1999), pp. 141–155. J. I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries, Pitman, London,1985. U. Hornung, Homogenization and Porous Media, Springer, New York, 1997. U. Hornung and W. Jäger, Diffusion, convection, adsorption and reaction of chemicals in porous media, J. Diff. Eqns. 92 (1991), pp. 199–225. U. Hornung, W. Jäger and A. Mikelic, Reactive transport through an array of cells with semi-permeable membranes, Model. Math. Anal. Numér. 28 (1994), pp. 59–94. J. L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites non Linéaires, Dunod, Gauthier-Villars, Paris, 1969. S. Monsurrò, Homogenization of a two-component composite with interfacial thermal barrier, Preprint Laboratoire J. L. Lions, Université Paris VI (2002). W.S. Norman, Absorption, Distillation and Cooling Towers, Longman, London, 1961. L. Tartar, Problèmes d’homogénéisation dans les equations aux dérivées partielles, in Cours Peccot, Collège de France, 1977. L. Tartar, Quelques remarques sur l’homogénéisation, in Functional Analysis and Numerical Analysis, Proceedings of the Japan-France Seminar 1976, H. Fujita ed., Japan Society for the Promotion of Science, pp. 469–482, Tokyo, 1978. M. Ughi, A melting problem with a mushy region: qualitative properties, IMA J. 33 (1984),pp. 135–152. J. M. Vega and A. Liñán, Isothermal n-th order reaction in catalytic pellets: effect of external mass transfer resistance, Chemical Engrg. Sci. 34, (1979), pp. 1319–1322.
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
181.pdf
Size:
301.75 KB
Format:
Adobe Portable Document Format

Collections