Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Convection Displacement Current and Generalized Form of Maxwell–Lorentz Equations

dc.contributor.authorChubykalo, Andrey E.
dc.contributor.authorSmirnov Rueda, Román
dc.date.accessioned2023-06-20T18:52:21Z
dc.date.available2023-06-20T18:52:21Z
dc.date.issued1997
dc.descriptionWe are grateful to Dr. V. Dvoeglazov and Professor M.W. Evans for many stimulating discussions. Authors are indebted for financial support, R. S.-R., to the Comunidad de Madrid, Spain, for the award of a Postgraduate Grant, A. Ch., to the Zacatecas University, M´exico, for a Full Professor position.
dc.description.abstractSome mathematical inconsistencies in the conventional form of Maxwell's equations extended by Lorentz for a single charge system are discussed. To surmount these in the framework of Maxwellian theory, a novel convection displacement current is considered as additional and complementary to the famous Maxwell displacement current. It is shown that this form of the Maxwell–Lorentz equations is similar to that proposed by Hertz for electrodynamics of bodies in motion. Original Maxwell's equations can be considered as a valid approximation for a continuous and closed (or going to infinity) conduction current. It is also proved that our novel form of the Maxwell–Lorentz equations is relativistically invariant. In particular, a relativistically invariant gauge for quasistatic fields has been found to replace the non-invariant Coulomb gauge. The new gauge condition contains the famous relationship between electric and magnetic potentials for one uniformly moving charge that is usually attributed to the Lorentz transformations. Thus, for the first time, using the convection displacement current, a physical interpretation is given to the relationship between the components of the four-vector of quasistatic potentials. A rigorous application of the new gauge transformation with the Lorentz gauge transforms the basic field equations into a pair of differential equations responsible for longitudinal and transverse fields, respectively. The longitudinal components can be interpreted exclusively from the standpoint of the instantaneous "action at a distance" concept and leads to necessary conceptual revision of the conventional Faraday–Maxwell field. The concept of electrodynamics dualism is proposed for self-consistent classical electrodynamics. It implies simultaneous coexistence of instantaneous long-range (longitudinal) and Faraday–Maxwell short-range (transverse) interactions that resembles in this aspect the basic idea of Helmholtz's electrodynamics.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid, Spain
dc.description.sponsorshipZacatecas University, Mexico
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23405
dc.identifier.doi10.1142/S0217732397000029
dc.identifier.issn0217-7323
dc.identifier.officialurlhttp://www.worldscientific.com/doi/abs/10.1142/S0217732397000029
dc.identifier.relatedurlhttp://www.worldscientific.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58822
dc.issue.number1
dc.journal.titleModern Physics Letters A
dc.language.isoeng
dc.page.final24
dc.page.initial1
dc.publisherWorld Scientific Publ Co Pte Ltd
dc.rights.accessRightsrestricted access
dc.subject.cdu537.8
dc.subject.ucmElectromagnetismo
dc.subject.unesco2202 Electromagnetismo
dc.titleConvection Displacement Current and Generalized Form of Maxwell–Lorentz Equations
dc.typejournal article
dc.volume.number12
dcterms.referencesE. Whittaker, A History of the Theories of Aether and Electricity (Humanites Press, New York, 1973),Vols. 1 and 2. W. Weber, Annalen der Physik, 73, 193 (1848). J.C. Maxwell, A Dynamical Theory of the Electromagnetic field, Scientific Papers, 526 (1864). J.C. Maxwell, Treatise on Electricity and Magnetism (Oxford Univ. Press, London, 1892). H. von Helmholtz, Wissenschaftliche Abhandlungen (Barth, Leipzig, 1882), Vol. 1. P.Duhem,The Aim and Structure of Physical Theory,(Princeton, 1954). J.J. Thompson, Philosophical Magazine xi, 229 (1881). O. Heaviside, Philosophical Magazine xxvii, 324 (1889). FitzGerald, Proc. Roy. Dublin Soc. iii, 250 (1881). M.W. Evans, Physica B 182, 227 (1992), 183, 103 (1993). M.W. Evans and J.-P. Vigier, The Enigmatic Photon (Kluwer, Dordrecht, 1994), Vol. 1. A. Chubykalo and R. Smirnov-Rueda, Phys. Rev. E (1996), in press. J.A. Wheeler and R.P. Feynman, Revs. of Mod. Phys. 21, 425 (1949). F.Hoyle and J.V.Narlikar,Revs. of Mod. Phys. 67, 113 (1995). L.D. Landau and E.M. Lifshitz, Teoria Polia (Nauka, Moscow, 1973) [English translation: Classical Theory of Field (Pergamon, Oxford, 1985)]. E.A. Hylleraas, Mathematical and Theoretical Physics (Wiley-Interscience, New York, 1970), Vol. 2. B.G. Levich, Theoretical Physics (North-Holland Publishing Company, Amsterdam-London, 1970), Vol. 1. H. Hertz, Wied. Annalen 41, 369 (1890). H. Hertz, Ges. Werke 2, 256 (1894). L.D.Jackson,Classical Electrodynamics(Wiley,New York, 1963). A.O. Barut, Electrodynamics and Classical Theory of Fields and Particles (Dover Publ., Inc., New York, 1980). J.C. Maxwell, On Physical Lines of Force, Scientific Papers, 482 (1864).
dspace.entity.typePublication
relation.isAuthorOfPublication5f81ed85-2b60-4901-8618-011d4bca5d9c
relation.isAuthorOfPublication.latestForDiscovery5f81ed85-2b60-4901-8618-011d4bca5d9c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Smirnov08.pdf
Size:
224.62 KB
Format:
Adobe Portable Document Format

Collections