Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Clustering Electrophysiological Predisposition to Binge Drinking: An Unsupervised Machine Learning Analysis

dc.contributor.authorUceta García, Marcos
dc.contributor.authorCerro León, Alberto Del
dc.contributor.authorShpakivska Bilán, Danylyna
dc.contributor.authorGarcía Moreno, Luis Miguel
dc.contributor.authorMaestu Unturbe, Fernando
dc.contributor.authorAntón Toro, Luis Fernando
dc.date.accessioned2025-01-23T12:34:12Z
dc.date.available2025-01-23T12:34:12Z
dc.date.issued2024
dc.descriptionThis article is funded by the Plan Nacional de Drogas of the Ministry of Health of the Spanish Government (Grant/Award Number: PND2021I075).
dc.description.abstractBackground The demand for fresh strategies to analyze intricate multidimensional data in neuroscience is increasingly evident. One of the most complex events during our neurodevelopment is adolescence, where our nervous system suffers constant changes, not only in neuroanatomical traits but also in neurophysiological components. One of the most impactful factors we deal with during this time is our environment, especially when encountering external factors such as social behaviors or substance consumption. Binge drinking (BD) has emerged as an extended pattern of alcohol consumption in teenagers, not only affecting their future lifestyle but also changing their neurodevelopment. Recent studies have changed their scope into finding predisposition factors that may lead adolescents into this kind of patterns of consumption. Methods In this article, using unsupervised machine learning (UML) algorithms, we analyze the relationship between electrophysiological activity of healthy teenagers and the levels of consumption they had 2 years later. We used hierarchical agglomerative UML techniques based on Ward's minimum variance criterion to clusterize relations between power spectrum and functional connectivity and alcohol consumption, based on similarity in their correlations, in frequency bands from theta to gamma. Results We found that all frequency bands studied had a pattern of clusterization based on anatomical regions of interest related to neurodevelopment and cognitive and behavioral aspects of addiction, highlighting the dorsolateral and medial prefrontal, the sensorimotor, the medial posterior, and the occipital cortices. All these patterns, of great cohesion and coherence, showed an abnormal electrophysiological activity, representing a dysregulation in the development of core resting‐state networks. The clusters found maintained not only plausibility in nature but also robustness, making this a great example of the usage of UML in the analysis of electrophysiological activity—a new perspective into analysis that, while contributing to classical statistics, can clarify new characteristics of the variables of interest.
dc.description.departmentDepto. de Biología Celular
dc.description.departmentDepto. de Psicobiología y Metodología en Ciencias del Comportamiento
dc.description.departmentDepto. de Psicología Experimental, Procesos Cognitivos y Logopedia
dc.description.facultyFac. de Ciencias Biológicas
dc.description.facultyFac. de Educación
dc.description.facultyFac. de Psicología
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Sanidad (España)
dc.description.statuspub
dc.identifier.citationUceta, M., Cerro-León, A.d., Shpakivska-Bilán, D., García-Moreno, L.M., Maestú, F. and Antón-Toro, L.F. (2024), Clustering Electrophysiological Predisposition to Binge Drinking: An Unsupervised Machine Learning Analysis. Brain Behav, 14: e70157. https://doi.org/10.1002/brb3.70157
dc.identifier.doi10.1002/brb3.70157
dc.identifier.issn2162-3279
dc.identifier.officialurlhttps://doi.org/10.1002/brb3.70157
dc.identifier.relatedurlhttps://onlinelibrary.wiley.com/doi/10.1002/brb3.70157
dc.identifier.urihttps://hdl.handle.net/20.500.14352/115837
dc.issue.number11
dc.journal.titleBrain and behavior
dc.language.isoeng
dc.publisherWiley
dc.relation.projectIDinfo:eu-repo/grantAgreement/Ministerio de Sanidad/Plan Nacional de Drogas/PND2021I075/ES
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu612.8
dc.subject.cdu612.8:159.9
dc.subject.cdu613.81-05
dc.subject.cdu57.087.1
dc.subject.cdu519.22-76
dc.subject.keywordBinge drinking
dc.subject.keywordClustering
dc.subject.keywordElectrophysiology
dc.subject.keywordPredisposition factors
dc.subject.keywordUnsupervised machine learning
dc.subject.ucmNeurociencias (Biológicas)
dc.subject.ucmNeuropsicología
dc.subject.ucmInvestigación operativa (Estadística)
dc.subject.unesco2411.11 Neurofisiología
dc.subject.unesco1207 Investigación Operativa
dc.subject.unesco2405 Biometría
dc.titleClustering Electrophysiological Predisposition to Binge Drinking: An Unsupervised Machine Learning Analysis
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number14
dspace.entity.typePublication
relation.isAuthorOfPublicationa8a44f84-5332-4846-97c9-9fd071d00454
relation.isAuthorOfPublication0462a43a-3165-47ed-9f25-8ca51f1a02f1
relation.isAuthorOfPublicationafa98131-b2fe-40fd-8f89-f3994d80ab72
relation.isAuthorOfPublication0dd44aef-b498-4da7-99b1-fd392e062cad
relation.isAuthorOfPublication.latestForDiscoverya8a44f84-5332-4846-97c9-9fd071d00454

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Clustering_electrophysiological.pdf
Size:
1.43 MB
Format:
Adobe Portable Document Format

Collections