Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Extinction times and size of the surviving species in a two-species competition process

dc.contributor.authorGómez-Corral, Antonio
dc.contributor.authorLópez-García, M.
dc.date.accessioned2023-06-20T00:12:29Z
dc.date.available2023-06-20T00:12:29Z
dc.date.issued2012-02-01
dc.description.abstractWe investigate a stochastic model for the competition between two species. Based on percentiles of the maximum number of individuals in the ecosystem, we present an approximating model for which the extinction time can be thought of as a phase-type random variable. We determine formulae for the probabilities of extinction and the moments of the extinction time. We discuss the use of several quasi-stationary assumptions. We include a comparative study between existing asymptotic results, results obtained from a simulation of the process, and our solution.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipGovernment of Spain (Ministry of Science and Innovation);
dc.description.sponsorshipEuropean Commission
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15547
dc.identifier.doi10.1007/s00285-011-0414-8
dc.identifier.issn0303-6812
dc.identifier.officialurlhttp://www.springerlink.com/content/f1n0012122027765/fulltext.pdf
dc.identifier.relatedurlhttp://www.springerlink.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42197
dc.journal.titleJournal of Mathematical Biology
dc.language.isoeng
dc.page.final289
dc.page.initial255
dc.publisherSpringer Verlag
dc.relation.projectIDMTM-2008-01121
dc.relation.projectIDBES-2009-018747
dc.rights.accessRightsrestricted access
dc.subject.cdu51-76
dc.subject.keywordCompetition process · Extinction times · Quasi-stationary regime
dc.subject.ucmBiomatemáticas
dc.subject.unesco2404 Biomatemáticas
dc.titleExtinction times and size of the surviving species in a two-species competition process
dc.typejournal article
dc.volume.number64
dcterms.referencesAllen EJ (1999) Stochastic differential equations and persistence time for two interacting populations. Dyn Contin Discret Impuls Syst 5:271–281 Allen LJS (2003) An introduction to stochastic processes with applications to biology. Pearson Education,New Jersey Bailey NTJ (1964) The elements of stochastic processes. Wiley, New York Ballyk MM, Wolkowicz GSK (2010) Classical and resource-based competition: a unifying graphical approach. J Math Biol. doi:10.1007/s00285-010-0328-x Barbour AD (1976) Quasi-stationary distributions in Markov population processes. Adv Appl Probab 8:296–314 BartlettMS(1956) Deterministic and stochastic models for recurrent epidemics. In: Neyman J (ed) Proceedings of the 3rd Berkeley symposium on mathematical statistics and probability, vol IV: Contributions to biology and problems of health. University of California Press, Berkeley, pp 81–109 Bartlett MS (1960) Stochastic population models in ecology and epidemiology. Wiley, New York Bean NG, Bright L, Latouche G, Pearce CEM, Pollett PK, Taylor PG (1997) The quasi-stationary behavior of quasi-birth-and-death processes. Ann Appl Probab 7:134–155 Bean NG, Pollett PK, Taylor PG (2000) Quasistationary distributions for level-dependent quasi-birth-anddeath processes. Stoch Model 16:511–541 Billard L (1974) Competition between two species. Stoch Process Their Appl 2:391–398 Brockwell PJ (1985) The extinction time of a birth, death and catastrophe process and of a related diffusion model. Adv Appl Probab 17:42–52 Chung KL (1960) Markov chains with stationary transition probabilities. Springer, Berlin Cushing JM (1980) Two species competition in a periodic environment. J Math Biol 10:385–400 Darroch JN, Seneta E (1965) On quasi-stationary distributions in absorbing discrete-time finite Markov chains. J Appl Probab 2:88–100 Darroch JN, Seneta E (1967) On quasi-stationary distributions in absorbing continuous-time finite Markov chains. J Appl Probab 4:192–196 Ellner S (1989) Convergence to stationary distributions in two-species stochastic competition models.J Math Biol 27:451–462 Gyllenberg M, Silvestrov DS (1994) Quasi-stationary distributions of a stochastic metapopulation model.J Math Biol 33:35–70 Gyllenberg M, Silvestrov DS (2008) Quasi-stationary phenomena in nonlinearly perturbed stochastic systems. Walter de Gruyter GmbH & Co. KG, Berlin Hsu SB (1981) On a resource based ecological competition model with interference. JMath Biol 12:45–52 123 Iglehart DL (1964) Multivariate competition processes. Ann Math Stat 35:350–361 Kemeny JG, Snell JL (1961) Potentials for denumerable Markov chains. J Math Anal Appl 6:196–260 Kijima M (1997) Markov processes for stochastic modelling. Chapman & Hall, London Lamperti J (1963) Criteria for stochastic processes. II. Passage-timemoments. J Math Anal Appl 7:127–145 Li B, Smith HL (2007) Global dynamics of microbial competition for two resources with internal storage.J Math Biol 55:481–515 Lotka AJ (1925) Elements of physical biology. Williams & Wilkins, Baltimore NeutsMF (1994) Matrix-geometric solutions in stochastic models: an algorithmic approach, 2nd edn.Dover Publications, New York Nisbet RM, Gurney WSC (1982) Modelling fluctuating populations. Wiley, New York Norris JR (2004) Markov chains. Cambridge University Press, Cambridge Pakes AG (1987) Limit theorems for the population size of a birth and death process allowing catastrophes.J Math Biol 25:307–325 Pakes AG (1988) The supercritical birth, death and catastrophe process: limit theorems on the set of nonextinction.J Math Biol 26:405–420 Pakes AG (1989) A complementary note on the supercritical birth, death and catastrophe process. J Math Biol 27:321–325 Pakes AG, Pollett PK (1989) The supercritical birth, death and catastrophe process: limit theorems on the set of extinction. Stoch Process Their Appl 32:161–170 Pielou EC (1969) An introduction to mathematical ecology. Wiley-Interscience, New York Pitman JW (1977) Occupation measures for Markov chains. Adv Appl Probab 9:69–86 Renshaw E (1991) Modelling biological populations in space and time. Cambridge University Press,Cambridge Reuter GEH (1961) Competition processes. In: Neyman J (ed) Proceedings of the 4th Berkeley symposium on mathematical statistics and probability, vol II: Contributions to probability theory. University of California Press, Berkeley, pp 421–430 Ridler-Rowe CJ (1978) On competition between two species. J Appl Probab 15:457–465 RoozenH (1987) Equilibrium and extinction in stochastic population dynamics.BullMath Biol 49:671–696 Shi DH, Guo J, Liu L (1996) SPH-Distributions and the rectangle-iterative algorithm. In: Chakravarthy SR, Alfa AS (eds) Matrix-analytic methods in stochastic models. Lecture notes in pure and applied mathematics, vol 183. Marcel Dekker, Inc., New York, pp 207–224 Silvestrov DS (1996) Recurrence relations for generalized hitting times for semi-Markov processes. Ann Appl Probab 6:617–649 Tilman D (1982) Resource competition and community structure. Princeton University Press, New Jersey Volterra V (1931) Leçons sur la théorie mathématique de la lutte pour la vie. Gauthier-Villars, Paris Walker DM (1998) The expected time until absorption when absorption is not certain. J Appl Probab 35:812–823
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Corral01.pdf
Size:
1.65 MB
Format:
Adobe Portable Document Format

Collections