Ruling out the impact of defects on the below band gap photoconductivity of Ti supersaturated Si

dc.contributor.authorMartil De La Plaza, Ignacio
dc.contributor.authorGarcía Hemme, Eric
dc.contributor.authorGarcía Hernansanz, Rodrigo
dc.contributor.authorGonzález Díaz, Germán
dc.contributor.authorOlea Ariza, Javier
dc.contributor.authorPrado Millán, Álvaro Del
dc.date.accessioned2023-06-19T13:24:17Z
dc.date.available2023-06-19T13:24:17Z
dc.date.issued2013-08-07
dc.description© 2013 AIP Publishing LLC. he authors would like to acknowledge the C.A.I. de Técnicas Físicas for ion implantation experiments and e-beam evaporations, the Nanotechnology and Surface Analysis Services of the Universidad de Vigo C.A.C.T.I. for ToF-SIMS measurements, Dr. J. Herrero (CIEMAT) for UVVIS-IR measurements facilities, and the Instituto de Nanociencia de Aragón for the TEM images. J. Olea and D. Pastor thanks Professor A. Martí and Professor A. Luque for useful discussions and guidance and acknowledge financial support from the MICINN within the program Juan de la Cierva (JCI-2011-10402 and JCI-2011-11471), under which this research was undertaken. Research by E. Garcìa-Hemme has been partly supported by a PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM). This work was partially supported by the projects NUMANCIA II (S-2009/ENE-1477) founded by the Regional Government of Comunidad de Madrid and grant GR35/10-A founded by the Universidad Complutense de Madrid.
dc.description.abstractIn this study, we present a structural and optoelectronic characterization of high dose Ti implanted Si subsequently pulsed-laser melted (Ti supersaturated Si). Time-of-flight secondary ion mass spectrometry analysis reveals that the theoretical Mott limit has been surpassed after the laser process and transmission electron microscopy images show a good lattice reconstruction. Optical characterization shows strong sub-band gap absorption related to the high Ti concentration. Photoconductivity measurements show that Ti supersaturated Si presents spectral response orders of magnitude higher than unimplanted Si at energies below the band gap. We conclude that the observed below band gap photoconductivity cannot be attributed to structural defects produced by the fabrication processes and suggest that both absorption coefficient of the new material and lifetime of photoexcited carriers have been enhanced due to the presence of a high Ti concentration. This remarkable result proves that Ti supersaturated Si is a promising material for both infrared detectors and high efficiency photovoltaic devices.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipMICINN
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25749
dc.identifier.citation1) A. Martí and A. Luque, Next Generation Photovoltaics: High Efficiency Through Full Spectrum Utilization (IOP Publishing, Ltd., Bristol, 2004). 2) G. Conibeer, Mater. Today 10, 42 (2007). 3) A. Luque and A. Martí, Phys. Rev. Lett. 78, 5014 (1997). 4) M. Casalino, Int. J. Opt. Appl. 2, 1 (2012). 5) A. Luque, A. Martí, E. Antolín, and C. Tablero, Physica B 382, 320 (2006). 6) M.T. Winkler, D. Recht, M.-J. Sher, A. J. Said, E. Mazur, and M.J. Aziz, Phys. Rev. Lett. 106, 178701 (2011). 7) D. Pastor, J. Olea, A. del Prado, E. García-Hemme, R. García-Hernansanz, and G. González-Díaz, Sol. Energy Mater. Sol. Cells 104, 159 (2012). 8) A. Luque and A. Martí, Adv. Mater. 22, 160 (2010). 9) C.W. White, J. Narayan, and R.T. Young, Science 204, 461 (1979). 10) M. Tabbal, T. Kim, J.M. Warrender, M.J. Aziz, B.L. Cardozo, and R.S. Goldman, J. Vac. Sci. Technol. B 25, 1847 (2007). 11) G. González-Díaz, J. Olea, I. Mártil, D. Pastor, A. Martí, E. Antolín, and A. Luque, Sol. Energy Mater. Sol. Cells 93, 1668 (2009). 12) S. Hocine and D. Mathiot, Appl. Phys. Lett. 53, 1269 (1988). 13) J. Olea, M. Toledano-Luque, D. Pastor, E. San-Andrés, I. Mártil, and G. González-Díaz, J. Appl. Phys. 107, 103524 (2010). 14) J. Narayan, C.W. White, M.J. Aziz, B. Stritzker, and A. Walthius, J. Appl. Phys. 57, 564 (1985). 15) K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, Phys. Rev. B 82, 165201 (2010). 16) K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, Phys. Rev. B 79, 165203 (2009). 17) T.G. Kim, J.M. Warrender, and M.J. Aziz, Appl. Phys. Lett. 88, 241902 (2006). 18) J. Olea, A. del Prado, D. Pastor, I. Mártil, and G. González-Díaz, J. Appl. Phys. 109, 113541 (2011). 19) E. Antolín, A. Martí, J. Olea, D. Pastor, G. González-Díaz, I. Mártil, and A. Luque, Appl. Phys. Lett. 94, 042115 (2009). 20) E. García-Hemme, R. García-Hernansanz, J. Olea, D. Pastor, A. del Prado, I. Mártil, and G. González-Díaz, Appl. Phys. Lett. 101, 192101 (2012). 21) J. Olea, G. González-Díaz, D. Pastor, and I. Mártil, J. Phys. D: Appl. Phys. 42, 085110 (2009). 22) J. Olea, G. González-Díaz, D. Pastor, I. Mártil, A. Martí, E. Antolín, and A. Luque, J. Appl. Phys. 109, 063718 (2011). 23) A. Rose, Concepts in Photoconductivity and Allied Problems (Robert E. Krieger Publishing Co., New York, 1978). 24) A.G. Milnes, Deep Impurities in Semiconductors (John Wiley & Sons, Inc., New York, 1973). 25) N.T. Bagraev, L.S. Vlasenko, A.A. Lebedev, I.A. Markulov, and P. Yusupov, Phys. Status Solidi B 103, K51 (1981). 26) A.A. Aivazov, A.L. Giorgadze, A.E. Zemko, V.K. Prokof’eva, A.R. Salmanov, and R. Kashimov, Inorg. Mater. 24, 5 (1988). 27) C.W. White, S.R. Wilson, B.R. Appleton, and F.W. Young, Jr., J. Appl. Phys. 51, 738 (1980). 28) M.O. Thompson, J.W. Mayer, A.G. Cullis, H.C. Webber, N.G. Chew, J.M. Poate, and D.C. Jacobson, Phys. Rev. Lett. 50, 896 (1983). 29) J. Olea, D. Pastor, M. Toledano-Luque, I. Mártil, and G. González-Díaz, J. Appl. Phys. 110, 064501 (2011). 30) M.J. Keevers and M.A. Green, Sol. Energy Mater. Sol. Cells 41/42, 195 (1996). 31) R.H. Bube, Electronic Properties of Crystalline Solids (Academic, New York, 1974). 32) N.V. Joshi, Photoconductivity: Art, Science and Technology (Marcel Dekker, Inc., New York, 1990). p. 17. 33) M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, Sensors 10, 10571 (2010). 34) C. Coletti, G. Bussetti, F. Arciprete, P. Chiaradia, and G. Chiarotti, Phys. Rev. B 66, 153307 (2002). 35) E. Fretwurst, V. Eremin, H. Feick, J. Gerhardt, Z. Li, and G. Lindström, Nucl. Instrum. Methods Phys. Res. A 388, 356 (1997). 36) M. Willander, J. Appl. Phys. 56, 3006 (1984). 37) T. Roth, M. Rüdiger, W. Warta, and S.W. Glunz, J. Appl. Phys. 104, 074510 (2008) ----L. Tilly, H.G. Grimmeiss, H. Pettersson, K. Schmalz, K. Tittelbach, and H. Kerkow, Phys. Rev. B 43, 9171 (1991) ----J.R. Morante, J.E. Carceller, P. Cartujo, and J. Barbolla, Solid-State Electron. 26, 1 (1983) ----M. Schulz, Appl. Phys. 4, 225 (1974). 38) J.R. Davis, Jr., A. Rohatgi, R.H. Hopkins, P.D. Blais, P.R. Choudhury, J.R. McCormick, and H.C. Mollenkopf, IEEE Trans. Electron Devices 27, 677 (1980).
dc.identifier.doi10.1063/1.4817254
dc.identifier.issn0021-8979
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.4817254
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33561
dc.issue.number5
dc.journal.titleJournal of Applied Physics
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.projectIDNUMANCIA II (S2009/ENE-1477)
dc.relation.projectID(JCI-2011-10402)
dc.relation.projectID(JCI-2011-11471)
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordSilicon Solar-Cells
dc.subject.keywordImplanted Silicon
dc.subject.keywordIon-Implantation
dc.subject.keywordLaser
dc.subject.keywordSemiconductors
dc.subject.keywordSulfur
dc.subject.keywordLayers.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleRuling out the impact of defects on the below band gap photoconductivity of Ti supersaturated Si
dc.typejournal article
dc.volume.number114
dspace.entity.typePublication
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublication838d6660-e248-42ad-b8b2-0599f3a4542b
relation.isAuthorOfPublicationa5ab602d-705f-4080-b4eb-53772168a203
relation.isAuthorOfPublication12efa09d-69f7-43d4-8a66-75d05b8fe161
relation.isAuthorOfPublication7a3a1475-b9cc-4071-a7d3-fbf68fe1dce0
relation.isAuthorOfPublication.latestForDiscovery838d6660-e248-42ad-b8b2-0599f3a4542b
Download
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martil,01libre.pdf
Size:
1.06 MB
Format:
Adobe Portable Document Format
Collections