Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A Human-Computer Interface based on Electromyography Command-Proportional Control

dc.book.titleProceedings of the 4th International Congress on Neurotechnology, Electronics and Informatics
dc.contributor.authorLobov, S.
dc.contributor.authorKrilova, N.
dc.contributor.authorKastalskiy, I.
dc.contributor.authorKazantsev, V.
dc.contributor.authorMakarov Slizneva, Valeriy
dc.contributor.editorKrebs, H. I.
dc.contributor.editorPedotti, A.
dc.contributor.editorFaisal, A.
dc.date.accessioned2023-06-18T07:15:55Z
dc.date.available2023-06-18T07:15:55Z
dc.date.issued2016
dc.description4th International Congress on Neurotechnology, Electronics and Informatics (NEUROTECHNIX)
dc.description.abstractSurface electromyographic (sEMG) signals represent a superposition of the motor unit action potentials that can be recorded by electrodes placed on the skin. Here we explore the use of an easy wearable sEMG bracelet for a remote interaction with a computer by means of hand gestures. We propose a human-computer interface that allows simulating “mouse” clicks by separate gestures and provides proportional control with two degrees of freedom for flexible movement of a cursor on a computer screen. We use an artificial neural network (ANN) for processing sEMG signals and gesture recognition both for mouse clicks and gradual cursor movements. At the beginning the ANN goes through an optimized supervised learning using either rigid or fuzzy class separation. In both cases the learning is fast enough and requires neither special measurement devices nor specific knowledge from the end-user. Thus, the approach enables building of low-budget user-friendly sEMG solutions.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/41159
dc.identifier.doihttp://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=0LFgGcWLOkA%3d&t=1
dc.identifier.isbn978-989-758-204-2
dc.identifier.officialurlhttp://dx.doi.org/10.5220/0006033300570064
dc.identifier.relatedurlhttp://www.scitepress.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24912
dc.language.isoeng
dc.page.final64
dc.page.initial57
dc.publication.placePortugal
dc.publisherScitepress
dc.rights.accessRightsrestricted access
dc.subject.cdu004.8
dc.subject.keywordElectromyography
dc.subject.keywordHuman-Computer Interface
dc.subject.keywordPattern Classification
dc.subject.keywordArtificial Neural Networks.
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleA Human-Computer Interface based on Electromyography Command-Proportional Control
dc.typebook part
dc.volume.number1
dspace.entity.typePublication
relation.isAuthorOfPublicationa5728eb3-1e14-4d59-9d6f-d7aa78f88594
relation.isAuthorOfPublication.latestForDiscoverya5728eb3-1e14-4d59-9d6f-d7aa78f88594

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Makarov43.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format