Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Riemann integrability and Lebesgue measurability of the composite function

dc.contributor.authorAzagra Rueda, Daniel
dc.contributor.authorMuñoz-Fernández, Gustavo A.
dc.contributor.authorSeoane Sepúlveda, Juan Benigno
dc.contributor.authorSánchez de los Reyes, Víctor Manuel
dc.date.accessioned2023-06-20T00:08:55Z
dc.date.available2023-06-20T00:08:55Z
dc.date.issued2009-06
dc.description.abstractIf f is continuous on the interval [a, b], g is Riemann integrable (resp. Lebesgue measurable) on the interval [alpha, beta] and g([alpha, beta]) subset of [a, b], then f o g is Riemann integrable (resp. measurable) on [alpha, beta]. A well-known fact, on the other hand, states that f o g might not be Riemann integrable (resp. measurable) when f is Riemann integrable (resp. measurable) and g is continuous. If c stands for the continuum, in this paper we construct a 2(c)-dimensional space V and a c-dimensional space W of, respectively, Riemann integrable functions and continuous functions such that, for every f is an element of V \ {0} and g is an element of W \ {0} . f o g is not Riemann integrable, showing that nice properties (such as continuity or Riemann integrability) can be lost, in a linear fashion, via the composite function. Similarly we construct a c-dimensional space W of continuous functions such that for every g is an element of W \ {0} there exists a c-dimensional space V of measurable functions such that f o g is not measurable for all f is an element of V \ {0}.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministry of Education and Science
dc.description.sponsorshipSpanish Ministry of Education and Science
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14744
dc.identifier.doi10.1016/j.jmaa.2008.12.033
dc.identifier.issn0022-247X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0022247X08012419
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42083
dc.journal.titleJournal of Mathematical Analysisand applications
dc.language.isoeng
dc.page.final233
dc.page.initial229
dc.publisherAcademic Press
dc.relation.projectIDMTM2006-03531
dc.relation.projectIDMTM2005-00082.
dc.rights.accessRightsrestricted access
dc.subject.cdu517.518.12
dc.subject.keywordLineability
dc.subject.keywordSpaces
dc.subject.keywordAlgebrability
dc.subject.keywordSets
dc.subject.keywordSpaceability
dc.subject.keywordRiemann integrability
dc.subject.keywordLebesgue measurable function
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleRiemann integrability and Lebesgue measurability of the composite function
dc.typejournal article
dc.volume.number354
dspace.entity.typePublication
relation.isAuthorOfPublication6696556b-dc2e-4272-8f5f-fa6a7a2f5344
relation.isAuthorOfPublicatione85d6b14-0191-4b04-b29b-9589f34ba898
relation.isAuthorOfPublication.latestForDiscovery6696556b-dc2e-4272-8f5f-fa6a7a2f5344

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
07.pdf
Size:
155.11 KB
Format:
Adobe Portable Document Format

Collections