Riemann integrability and Lebesgue measurability of the composite function
dc.contributor.author | Azagra Rueda, Daniel | |
dc.contributor.author | Muñoz-Fernández, Gustavo A. | |
dc.contributor.author | Seoane Sepúlveda, Juan Benigno | |
dc.contributor.author | Sánchez de los Reyes, Víctor Manuel | |
dc.date.accessioned | 2023-06-20T00:08:55Z | |
dc.date.available | 2023-06-20T00:08:55Z | |
dc.date.issued | 2009-06 | |
dc.description.abstract | If f is continuous on the interval [a, b], g is Riemann integrable (resp. Lebesgue measurable) on the interval [alpha, beta] and g([alpha, beta]) subset of [a, b], then f o g is Riemann integrable (resp. measurable) on [alpha, beta]. A well-known fact, on the other hand, states that f o g might not be Riemann integrable (resp. measurable) when f is Riemann integrable (resp. measurable) and g is continuous. If c stands for the continuum, in this paper we construct a 2(c)-dimensional space V and a c-dimensional space W of, respectively, Riemann integrable functions and continuous functions such that, for every f is an element of V \ {0} and g is an element of W \ {0} . f o g is not Riemann integrable, showing that nice properties (such as continuity or Riemann integrability) can be lost, in a linear fashion, via the composite function. Similarly we construct a c-dimensional space W of continuous functions such that for every g is an element of W \ {0} there exists a c-dimensional space V of measurable functions such that f o g is not measurable for all f is an element of V \ {0}. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Spanish Ministry of Education and Science | |
dc.description.sponsorship | Spanish Ministry of Education and Science | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/14744 | |
dc.identifier.doi | 10.1016/j.jmaa.2008.12.033 | |
dc.identifier.issn | 0022-247X | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/S0022247X08012419 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/42083 | |
dc.journal.title | Journal of Mathematical Analysisand applications | |
dc.language.iso | eng | |
dc.page.final | 233 | |
dc.page.initial | 229 | |
dc.publisher | Academic Press | |
dc.relation.projectID | MTM2006-03531 | |
dc.relation.projectID | MTM2005-00082. | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.518.12 | |
dc.subject.keyword | Lineability | |
dc.subject.keyword | Spaces | |
dc.subject.keyword | Algebrability | |
dc.subject.keyword | Sets | |
dc.subject.keyword | Spaceability | |
dc.subject.keyword | Riemann integrability | |
dc.subject.keyword | Lebesgue measurable function | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.title | Riemann integrability and Lebesgue measurability of the composite function | |
dc.type | journal article | |
dc.volume.number | 354 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 6696556b-dc2e-4272-8f5f-fa6a7a2f5344 | |
relation.isAuthorOfPublication | e85d6b14-0191-4b04-b29b-9589f34ba898 | |
relation.isAuthorOfPublication.latestForDiscovery | 6696556b-dc2e-4272-8f5f-fa6a7a2f5344 |
Download
Original bundle
1 - 1 of 1