Riemann integrability and Lebesgue measurability of the composite function

dc.contributor.authorAzagra Rueda, Daniel
dc.contributor.authorMuñoz-Fernández, Gustavo A.
dc.contributor.authorSeoane Sepúlveda, Juan Benigno
dc.contributor.authorSánchez de los Reyes, Víctor Manuel
dc.date.accessioned2023-06-20T00:08:55Z
dc.date.available2023-06-20T00:08:55Z
dc.date.issued2009-06
dc.description.abstractIf f is continuous on the interval [a, b], g is Riemann integrable (resp. Lebesgue measurable) on the interval [alpha, beta] and g([alpha, beta]) subset of [a, b], then f o g is Riemann integrable (resp. measurable) on [alpha, beta]. A well-known fact, on the other hand, states that f o g might not be Riemann integrable (resp. measurable) when f is Riemann integrable (resp. measurable) and g is continuous. If c stands for the continuum, in this paper we construct a 2(c)-dimensional space V and a c-dimensional space W of, respectively, Riemann integrable functions and continuous functions such that, for every f is an element of V \ {0} and g is an element of W \ {0} . f o g is not Riemann integrable, showing that nice properties (such as continuity or Riemann integrability) can be lost, in a linear fashion, via the composite function. Similarly we construct a c-dimensional space W of continuous functions such that for every g is an element of W \ {0} there exists a c-dimensional space V of measurable functions such that f o g is not measurable for all f is an element of V \ {0}.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministry of Education and Science
dc.description.sponsorshipSpanish Ministry of Education and Science
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14744
dc.identifier.doi10.1016/j.jmaa.2008.12.033
dc.identifier.issn0022-247X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0022247X08012419
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42083
dc.journal.titleJournal of Mathematical Analysisand applications
dc.language.isoeng
dc.page.final233
dc.page.initial229
dc.publisherAcademic Press
dc.relation.projectIDMTM2006-03531
dc.relation.projectIDMTM2005-00082.
dc.rights.accessRightsrestricted access
dc.subject.cdu517.518.12
dc.subject.keywordLineability
dc.subject.keywordSpaces
dc.subject.keywordAlgebrability
dc.subject.keywordSets
dc.subject.keywordSpaceability
dc.subject.keywordRiemann integrability
dc.subject.keywordLebesgue measurable function
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleRiemann integrability and Lebesgue measurability of the composite function
dc.typejournal article
dc.volume.number354
dspace.entity.typePublication
relation.isAuthorOfPublication6696556b-dc2e-4272-8f5f-fa6a7a2f5344
relation.isAuthorOfPublicatione85d6b14-0191-4b04-b29b-9589f34ba898
relation.isAuthorOfPublication.latestForDiscovery6696556b-dc2e-4272-8f5f-fa6a7a2f5344

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
07.pdf
Size:
155.11 KB
Format:
Adobe Portable Document Format

Collections