Solution landscapes in nematic microfluidics
Loading...
Full text at PDC
Publication date
2017
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citation
Abstract
We study the static equilibria of a simplified Leslie–Ericksen model for a unidirectional uniaxial nematic flow in a prototype microfluidic channel, as a function of the pressure gradient G and inverse anchoring strength, B. We numerically find multiple static equilibria for admissible pairs (G,B) and classify them according to their winding numbers and stability. The case G=0 is analytically tractable and we numerically study how the solution landscape is transformed as G increases. We study the one-dimensional dynamical model, the sensitivity of the dynamic solutions to initial conditions and the rate of change of G and B. We provide a physically interesting example of how the time delay between the applications of G and B can determine the selection of the final steady state.