Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Decision tree learning to predict overweight/obesity based on body mass index and gene polymporphisms

dc.contributor.authorRodríguez Pardo, Carlos
dc.contributor.authorSegura, Antonio
dc.contributor.authorZamorano León, José Javier
dc.contributor.authorMartínez Santos, Cristina
dc.contributor.authorMartínez Hernández, David
dc.contributor.authorCollado Yurrita, Luis Rodolfo
dc.contributor.authorGiner, Manel
dc.contributor.authorGarcía García, José M.
dc.contributor.authorRodríguez Pardo, José M.
dc.contributor.authorLópez Farre, Antonio José
dc.date.accessioned2024-10-10T10:49:19Z
dc.date.available2024-10-10T10:49:19Z
dc.date.issued2019-05
dc.description.abstractThe new technologies for data analysis, such as decision tree learning, may help to predict the risk of developing diseases. The aim of the present work was to develop a pilot decision tree learning to predict overweight/obesity based on the combination of six single nucleotide polymorphisms (SNP) located in feeding-associated genes. Genotype study was performed in 151 healthy individuals, who were anonymized and randomly selected from the TALAVERA study. The decision tree analysis was performed using the R package rpart. The learning process was stopped when 15 or less observation was found in a node. The participant group consisted of 78 men and 73 women, who 100 individuals showed body mass index (BMI) ≥ 25 kg/m2 and 51 BMI < 25 kg/m2. Chi-square analysis revealed that individuals with BMI ≥ 25 kg/m2 showed higher frequency of the allelic variation Ala67Ala in AgRP rs5030980 with respect to those with BMI <25 kg/m2. However, the variant Thr67Ala in AgRP rs5030980 was the most frequently found in individuals with BMI <25 kg/m2. There were no statistical differences in the other analyzed SNPs. Decision tree learning revealed that carriers of the allelic variants AgRP (rs5030980) Ala67Ala, ADRB2 (rs1042714) Gln27Glu or Glu27Glu, INSIG2 (rs7566605) 73 + 9802 with CC or GG genotypes and PPARG (rs1801282) with the allelic variants of Ala12Ala or Pro12Pro, will most likely develop overweight/obesity (BMI ≥ 25 kg/m2). Moreover, the decision tree learning indicated that age and gender may change the developed three decision learning associated with overweight/obesity development. The present work should be considered as a pilot demonstrative study to reinforce the broad field of application of new data analysis technologies, such as decision tree learning, as useful tools for diseases prediction. This technology may achieve a potential applicability in the design of early strategies to prevent overweight/obesity.
dc.description.departmentDepto. de Salud Pública y Materno - Infantil
dc.description.departmentDepto. de Medicina
dc.description.facultyFac. de Medicina
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipComunidad de Madrid
dc.description.statuspub
dc.identifier.citationRodríguez-Pardo C, Segura A, Zamorano-León JJ, Martínez-Santos C, Martínez D, Collado-Yurrita L, Giner M, García-García JM, Rodríguez-Pardo JM, López-Farre A. Decision tree learning to predict overweight/obesity based on body mass index and gene polymporphisms. Gene. 2019 May 30;699:88-93. doi: 10.1016/j.gene.2019.03.011
dc.identifier.doi10.1016/j.gene.2019.03.011
dc.identifier.essn1879-0038
dc.identifier.issn0378-1119
dc.identifier.officialurlhttps://doi.org/10.1016/j.gene.2019.03.011
dc.identifier.pmid30858138
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S037811191930232X?via%3Dihub
dc.identifier.urihttps://hdl.handle.net/20.500.14352/108853
dc.issue.number30 May 2019
dc.journal.titleGene
dc.language.isoeng
dc.page.final93
dc.page.initial88
dc.publisherElsevier
dc.relation.projectIDinfo:eu-repo/grantAgreement/CAM/B2017/BMD-3773
dc.rights.accessRightsrestricted access
dc.subject.cdu614
dc.subject.keywordDecision tree
dc.subject.keywordOverweight
dc.subject.keywordObesity
dc.subject.keywordGenotype
dc.subject.keywordSingle nucleotide polymorphism
dc.subject.keywordBody mass index
dc.subject.ucmCiencias Biomédicas
dc.subject.ucmSalud pública (Medicina)
dc.subject.unesco24 Ciencias de la Vida
dc.subject.unesco3212 Salud Publica
dc.titleDecision tree learning to predict overweight/obesity based on body mass index and gene polymporphisms
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number699
dspace.entity.typePublication
relation.isAuthorOfPublication87c0e499-ccfa-49e0-93aa-b26aef373c89
relation.isAuthorOfPublicationa32cb793-62d2-4b43-8579-8c48c2474e9d
relation.isAuthorOfPublicationf4b05d18-6f6e-466a-ac00-322e031f2569
relation.isAuthorOfPublication27484823-b27d-477e-9b91-e464c245e044
relation.isAuthorOfPublication.latestForDiscovery87c0e499-ccfa-49e0-93aa-b26aef373c89

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Q2 Gene 699 2019 88–93.pdf
Size:
507.28 KB
Format:
Adobe Portable Document Format

Collections