Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A note on Ritt's theorem on decomposition of polynomials

dc.contributor.authorCorrales Rodrigáñez, Carmen
dc.date.accessioned2023-06-20T18:41:45Z
dc.date.available2023-06-20T18:41:45Z
dc.date.issued1990
dc.description.abstractIt is known [J. F. Ritt, Trans. Am. Math. Soc. 23, 51-66 (1922; JFM 48.0079.01), H. T. Engstrom, Am. J. Math. 63, 249–255 (1941; Zbl 0025.10403), H.Levi, ibid. 64, 389–400 (1942; Zbl 0063.03512), F. Dorey and G. Whaples, J. Algebra 28, 88-101 (1974; Zbl 0286.12102)] that over fields of characteristic zero, if a polynomial f(x) can be decomposed into two different ways as f = f1 o f2 = g1 o g2, then (up to linear transformations) either f1, f2, g1 and g2 are all trigonometric polynomials, or f1of2 = g1 o g2 is of the form xm o xr · f(x) = xr · (f(x))m o xm. The result holds over fields of prime characteristic when the involved field extensions are separable and there are no wildly ramified primes. In this note we give an example of a whole family of polynomials with degrees non divisible by the characteristic of the field having more than one decomposition.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20274
dc.identifier.doi10.1016/0022-4049(90)90086-W
dc.identifier.issn0022-4049
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/002240499090086W
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58332
dc.issue.number3
dc.journal.titleJournal of Pure and Applied Algebra
dc.language.isoeng
dc.page.final296
dc.page.initial293
dc.publisherElsevier Science B.V. (North-Holland)
dc.rights.accessRightsrestricted access
dc.subject.cdu511
dc.subject.keywordRitt’s theorem
dc.subject.keywordDecomposition of polynomials
dc.subject.ucmTeoría de números
dc.subject.unesco1205 Teoría de Números
dc.titleA note on Ritt's theorem on decomposition of polynomials
dc.typejournal article
dc.volume.number68
dcterms.referencesF. Dorey and G. Whaples, Prime and composite polynomials,J. Algebra 28 (1972) 88-101. H.T. EngstrBm, Polynomial substitutions, Amer. J. Math.63 (1941) 249-255. M. Fried, On a conjecture of Schur, Michigan Math. J. 17 (1970) 41-55. H. Levi, Composite polynomials with coefficients in an arbitrary field of characteristic zero, Amer.J. Math. 64 (1942) 389-400. J.F. Ritt, Prime and composite polynomials, Trans. Amer.Math. Sot. 23 (1922) 51-66. A. Schinzel, Selected Topics in Polynomials (Section 4,Ritt’s First Theorem; Section 5, Ritt’s Second Theorem) (University of Michigan Press, Ann Arbor, 1982) 12-39.
dspace.entity.typePublication
relation.isAuthorOfPublication9a5ad1cc-287e-48b3-83f9-e3d1e36d5ff2
relation.isAuthorOfPublication.latestForDiscovery9a5ad1cc-287e-48b3-83f9-e3d1e36d5ff2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Corrales7.pdf
Size:
195.33 KB
Format:
Adobe Portable Document Format

Collections