A note on Ritt's theorem on decomposition of polynomials
dc.contributor.author | Corrales Rodrigáñez, Carmen | |
dc.date.accessioned | 2023-06-20T18:41:45Z | |
dc.date.available | 2023-06-20T18:41:45Z | |
dc.date.issued | 1990 | |
dc.description.abstract | It is known [J. F. Ritt, Trans. Am. Math. Soc. 23, 51-66 (1922; JFM 48.0079.01), H. T. Engstrom, Am. J. Math. 63, 249–255 (1941; Zbl 0025.10403), H.Levi, ibid. 64, 389–400 (1942; Zbl 0063.03512), F. Dorey and G. Whaples, J. Algebra 28, 88-101 (1974; Zbl 0286.12102)] that over fields of characteristic zero, if a polynomial f(x) can be decomposed into two different ways as f = f1 o f2 = g1 o g2, then (up to linear transformations) either f1, f2, g1 and g2 are all trigonometric polynomials, or f1of2 = g1 o g2 is of the form xm o xr · f(x) = xr · (f(x))m o xm. The result holds over fields of prime characteristic when the involved field extensions are separable and there are no wildly ramified primes. In this note we give an example of a whole family of polynomials with degrees non divisible by the characteristic of the field having more than one decomposition. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/20274 | |
dc.identifier.doi | 10.1016/0022-4049(90)90086-W | |
dc.identifier.issn | 0022-4049 | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/002240499090086W | |
dc.identifier.relatedurl | http://www.sciencedirect.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/58332 | |
dc.issue.number | 3 | |
dc.journal.title | Journal of Pure and Applied Algebra | |
dc.language.iso | eng | |
dc.page.final | 296 | |
dc.page.initial | 293 | |
dc.publisher | Elsevier Science B.V. (North-Holland) | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 511 | |
dc.subject.keyword | Ritt’s theorem | |
dc.subject.keyword | Decomposition of polynomials | |
dc.subject.ucm | Teoría de números | |
dc.subject.unesco | 1205 Teoría de Números | |
dc.title | A note on Ritt's theorem on decomposition of polynomials | |
dc.type | journal article | |
dc.volume.number | 68 | |
dcterms.references | F. Dorey and G. Whaples, Prime and composite polynomials,J. Algebra 28 (1972) 88-101. H.T. EngstrBm, Polynomial substitutions, Amer. J. Math.63 (1941) 249-255. M. Fried, On a conjecture of Schur, Michigan Math. J. 17 (1970) 41-55. H. Levi, Composite polynomials with coefficients in an arbitrary field of characteristic zero, Amer.J. Math. 64 (1942) 389-400. J.F. Ritt, Prime and composite polynomials, Trans. Amer.Math. Sot. 23 (1922) 51-66. A. Schinzel, Selected Topics in Polynomials (Section 4,Ritt’s First Theorem; Section 5, Ritt’s Second Theorem) (University of Michigan Press, Ann Arbor, 1982) 12-39. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 9a5ad1cc-287e-48b3-83f9-e3d1e36d5ff2 | |
relation.isAuthorOfPublication.latestForDiscovery | 9a5ad1cc-287e-48b3-83f9-e3d1e36d5ff2 |
Download
Original bundle
1 - 1 of 1